We demonstrate thermal noise limited and shot noise limited performance of ultra-stable diode laser systems. The measured heterodyne beat linewidth between such two independent diode lasers reaches 0.74 Hz. The frequency instability of one single laser approaches 1.0 × 10−15 for averaging time between 0.3 s and 10 s, which is close to the thermal noise limit of the reference cavity. Taking advantage of these two ultra-stable laser systems, we systematically investigate the ultimate electrical noise contributions, and derive expressions for the closed-loop spectral density of laser frequency noise. The measured power spectral density of the beat frequency is compared with the theoretically calculated closed-loop spectral density of the laser frequency noise, and they agree very well. It illustrates the power and generality of the derived closed-loop spectral density formula of the laser frequency noise. Our result demonstrates that a 10−17 level locking in a wide frequency range is feasible with careful design.

1.
W. H.
Oskay
,
W. M.
Itano
, and
J. C.
Bergquist
, “
Measurement of the 199Hg+ 5d96s22D5/2 electric quadrupole moment and a constraint on the quadrupole shift
,”
Phys. Rev. Lett.
94
,
163001
(
2005
).
2.
B.
Willke
,
K.
Danzmann
,
M.
Frede
,
P.
King
,
D.
Kracht
,
P.
Kwee
,
O.
Puncken
,
R. L.
Savage
,
B.
Schulz
,
F.
Seifert
,
C.
Veltkamp
,
S.
Wagner
,
P.
Weβels
, and
L.
Winkelmann
, “
Stabilized lasers for advanced gravitational wave detectors
,”
Classical Quantum Gravity
25
,
114040
(
2008
).
3.
M.
Nagel
and
A.
Peters
, “
Towards an ultra-stable optical sapphire cavity system for testing Lorentz invariance
,” e-print arXiv:1112.3623v1 (
2011
).
4.
T.
Rosenband
,
D. B.
Hume
,
P. O.
Schmidt
,
C. W.
Chou
,
A.
Brusch
,
L.
Lorini
,
W. H.
Oskay
,
R. E.
Drullinger
,
T. M.
Fortier
,
J. E.
Stalnaker
,
S. A.
Diddams
,
W. C.
Swann
,
N. R.
Newbury
,
W. M.
Itano
,
D. J.
Wineland
, and
J. C.
Bergquist
, “
Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place
,”
Science
319
,
1808
1812
(
2008
).
5.
A. D.
Ludlow
,
M. M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P. O.
Schmidt
, “
Optical atomic clocks
,”
Rev. Mod. Phys.
87
,
637
(
2015
).
6.
R. W. P.
Drever
,
J. L.
Hall
,
F. V.
Kowalski
,
J.
Hough
,
G. M.
Ford
,
A. J.
Munley
, and
H.
Ward
, “
Laser phase and frequency stabilization using an optical resonator
,”
Appl. Phys. B
31
,
97
105
(
1983
).
7.
K.
Numata
,
A.
Kemery
, and
J.
Camp
, “
Thermal-noise limit in the frequency stabilization of lasers with rigid cavities
,”
Phys. Rev. Lett.
93
,
250602
(
2004
).
8.
T.
Kessler
,
T.
Legero
, and
U.
Sterr
, “
Thermal noise in optical cavities revisited
,”
J. Opt. Soc. Am. B
29
,
178
184
(
2012
).
9.
B. C.
Young
,
F. C.
Cruz
,
W. M.
Itano
, and
J. C.
Bergquist
, “
Visible lasers with subhertz linewidths
,”
Phys. Rev. Lett.
82
,
3799
3802
(
1999
).
10.
T.
Nazarova
,
F.
Riehle
, and
U.
Sterr
, “
Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser
,”
Appl. Phys. B
83
,
531
(
2006
).
11.
S. A.
Webster
,
M.
Oxborrow
, and
P.
Gill
, “
Vibration insensitive optical cavity
,”
Phys. Rev. A
75
,
011801(R)
(
2007
).
12.
A. D.
Ludlow
,
X.
Huang
,
M.
Notcutt
,
T.
Zanon-Willette
,
S. M.
Foreman
,
M. M.
Boyd
,
S.
Blatt
, and
J.
Ye
, “
Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15
,”
Opt. Lett.
32
,
641
643
(
2007
).
13.
J.
Alnis
,
A.
Matveev
,
N.
Kolachevsky
,
Th.
Udem
, and
T. W.
Hänsch
, “
Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities
,”
Phys. Rev. A
77
,
053809
(
2008
).
14.
S. A.
Webster
,
M.
Oxborrow
,
S.
Pugla
,
J.
Millo
, and
P.
Gill
, “
Thermal-noise-limited optical cavity
,”
Phys. Rev. A
77
,
033847
(
2008
).
15.
J.
Millo
,
D. V.
Magalhães
,
C.
Mandache
,
Y.
Le Coq
,
E. M. L.
English
,
P. G.
Westergaard
,
J.
Lodewyck
,
S.
Bize
,
P.
Lemonde
, and
G.
Santarelli
, “
Ultrastable lasers based on vibration insensitive cavities
,”
Phys. Rev. A
79
,
053829
(
2009
).
16.
P.
Dubé
,
A. A.
Madej
,
J. E.
Bernard
,
L.
Marmet
, and
A. D.
Shiner
, “
A narrow linewidth and frequency-stable probe laser source for the 88Sr+ single ion optical frequency standard
,”
Appl. Phys. B
95
,
43
54
(
2009
).
17.
Y. N.
Zhao
,
J.
Zhang
,
A.
Stejskal
,
T.
Liu
,
V.
Elman
,
Z. H.
Lu
, and
L. J.
Wang
, “
A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability
,”
Opt. Express
17
,
8970
(
2009
).
18.
S. T.
Dawkins
,
R.
Chicireanu
,
M.
Petersen
,
J.
Millo
,
D. V.
Magalhães
,
C.
Mandache
,
Y.
Le Coq
, and
S.
Bize
, “
An ultra-stable referenced interrogation system in the deep ultraviolet for a mercury optical lattice clock
,”
Appl. Phys. B
99
,
41
-
46
(
2010
).
19.
Y. N.
Zhao
,
J.
Zhang
,
J.
Stuhler
,
G.
Schuricht
,
F.
Lison
,
Z. H.
Lu
, and
L. J.
Wang
, “
Sub-hertz frequency stabilization of a commercial diode laser
,”
Opt. Commun.
283
,
4696
(
2010
).
20.
H. Q.
Chen
,
Y. Y.
Jiang
,
S.
Fang
,
Z. Y.
Bi
, and
L. S.
Ma
, “
Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz
,”
J. Opt. Soc. Am. B
30
,
1546
(
2013
).
21.
Y. Y.
Jiang
,
A. D.
Ludlow
,
N. D.
Lemke
,
R. W.
Fox
,
J. A.
Sherman
,
L.-S.
Ma
, and
C. W.
Oates
, “
Making optical atomic clocks more stable with 10−16 level laser stabilization
,”
Nat. Photonics
5
,
158
(
2011
).
22.
S.
Amairi
,
T.
Legero
,
T.
Kessler
,
U.
Sterr
,
J. B.
Wübbena
,
O.
Mandel
, and
P. O.
Schmidt
, “
Reducing the effect of thermal noise in optical cavities
,”
Appl. Phys. B
113
,
233
242
(
2013
).
23.
J.
Keller
,
S.
Ignatovich
,
S. A.
Webster
, and
T. E.
Mehlstäubler
, “
Simple vibration-insensitive cavity for laser stabilization at the 10−16 level
,”
Appl. Phys. B
116
,
203
-
210
(
2014
).
24.
S.
Häfner
,
S.
Falke
,
C.
Grebing
,
S.
Vogt
,
T.
Legero
,
M.
Merimaa
,
C.
Lisdat
, and
U.
Sterr
, “
8 × 10−17 fractional laser frequency instability with a long room-temperature cavity
,”
Opt. Lett.
40
,
2112
(
2015
).
25.
G. D.
Cole
,
W.
Zhang
,
M. J.
Martin
,
J.
Ye
, and
M.
Aspelmeyer
, “
Tenfold reduction of Brownian noise in high-reflectivity optical coatings
,”
Nat. Photonics
7
,
644
(
2013
).
26.
T.
Kessler
,
C.
Hagemann
,
C.
Grebing
,
T.
Legero
,
U.
Sterr
,
F.
Riehle
,
M. J.
Martin
,
L.
Chen
, and
J.
Ye
, “
A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity
,”
Nat. Photonics
6
,
687
(
2012
).
27.
C.
Hagemann
,
C.
Grebing
,
C.
Lisdat
,
S.
Falke
,
T.
Legero
,
U.
Sterr
,
F.
Riehle
,
M. J.
Martin
, and
J.
Ye
, “
Ultrastable laser with average fractional frequency drift rate below 5 × 10−19/s
,”
Opt. Lett.
39
,
5102
(
2014
).
28.
E.
Wiens
,
Q. F.
Chen
,
I.
Ernsting
,
H.
Luckmann
,
U.
Rosowski
,
A.
Nevsky
, and
S.
Schiller
, “
Silicon single-crystal cryogenic optical resonator
,”
Opt. Lett.
39
,
3242
(
2014
).
29.
L. S.
Chen
,
J. L.
Hall
,
J.
Ye
,
T.
Yang
,
E. J.
Zang
, and
T. C.
Li
, “
Vibration-induced elastic deformation of Fabry-Perot cavities
,”
Phys. Rev. A
74
,
053801
(
2006
).
30.
J.
Zhang
,
Y. X.
Luo
,
B.
Ouyang
,
K.
Deng
,
Z. H.
Lu
, and
J.
Luo
, “
Design of an optical reference cavity with low thermal noise limit and flexible thermal expansion properties
,”
Eur. Phys. J. D
67
,
46
(
2013
).
31.
J.
Zhang
,
W.
Wu
,
X. H.
Shi
,
X. Y.
Zeng
,
K.
Deng
, and
Z. H.
Lu
, “
Design verification of large time constant thermal shields for optical reference cavities
,”
Rev. Sci. Instrum.
87
,
023104
(
2016
).
32.
Ch.
Salomon
,
D.
Hils
, and
J. L.
Hall
, “
Laser stabilization at the millihertz level
,”
J. Opt. Soc. Am. B
5
,
1576
(
1988
).
33.
T.
Day
,
E. K.
Gustafson
, and
R. L.
Byer
, “
Sub-hertz relative frequency stabilization of two-diode laser-pumped Nd:YAG lasers locked to a Fabry-Perot interferometer
,”
IEEE J. Quantum Electron.
28
,
1106
1117
(
1992
).
34.
O.
Mor
and
A.
Arie
, “
Perfromance analysis of Drever-Hall laser frequency stabilization using a proportional + integral servo
,”
IEEE J. Quantum Electron.
33
,
532
(
1997
).
35.
J.
Millo
,
M.
Merzougui
,
S. D.
Pace
, and
W.
Chaibi
, “
High bandwidth frequency lock of a rigid tunable optical cavity
,”
Appl. Opt.
53
,
7761
(
2014
).
36.
G. J.
Dick
, “
Local oscillator induced instabilities in trapped ion frequency standards
,” in
Proceedings of Precise Time and Time Interval
,
Redondo Beach, CA
(
US Naval Observatory
,
1987
), Vol.
19
, p.
133
.
37.
M.
Schiemangk
,
S.
Spießberger
,
A.
Wicht
,
G.
Erbert
,
G.
Tränkle
, and
A.
Peters
, “
Accurate frequency noise measurement of free-running lasers
,”
Appl. Opt.
53
,
7138
(
2014
).
38.
F.
Riehle
, “
Frequency standards basics and applications
” (Wiley-VCH Verlag, 2004). Note that in our paper, the notation ofS is for linear power spectral density, corresponding to square-root power spectral density in the reference.
You do not currently have access to this content.