Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 μm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 μm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766–774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 μm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a “narrow band” energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

1.
P.
Kirkpatrick
and
A. V.
Baez
,
J. Opt. Soc. Am.
38
,
766
774
(
1948
).
2.
G. H.
Miller
 et al,
Opt. Eng.
43
,
2841
2853
(
2004
).
3.
J. D.
Lindl
 et al,
Phys. Plasmas
11
,
339
491
(
2004
).
4.
L. R.
Benedetti
 et al,
Rev. Sci. Instrum.
87
,
023511
(
2016
).
5.
J. A.
Oertel
 et al,
Rev. Sci. Instrum.
77
,
10E308
(
2006
).
6.
T. J.
Hilsabeck
 et al,
Rev. Sci. Instrum.
81
,
10E317
(
2010
).
7.
S. R.
Nagel
 et al,
Rev. Sci. Instrum.
83
,
10E116
(
2012
).
8.
S. R.
Nagel
 et al,
Rev. Sci. Instrum.
85
,
11E504
(
2014
).
9.
J. A.
Koch
 et al,
Appl. Opt.
37
,
1784
1795
(
1998
).
10.
V. A.
Smalyuk
 et al,
Phys. Rev. Lett.
112
,
185003
(
2014
).
11.
J. R.
Rygg
 et al,
Phys. Rev. Lett.
112
,
195001
(
2014
).
12.
S. H.
Glenzer
 et al,
Science
327
,
1228
1231
(
2010
).
13.
L. A.
Pickworth
 et al,
Phys. Rev. Lett.
117
,
035001
(
2016
).
14.
M.
Young
,
Phys. Teach.
27
,
648
655
(
1989
).
15.
R. H.
Price
and
W. C.
Priedhorsky
,
Kirkpatrick-Baez X-ray-microscope Optimization for Inertial-confinement-fusion Applications
,
1983
.
16.
T. W.
Barbee
, Jr.
,
Opt. Eng.
25
,
258898
(
1986
).
17.
N. F.
Brejnholt
 et al,
Proc. SPIE
9591
,
95910J
(
2015
).
18.
L. A.
Pickworth
 et al,
Rev. Sci. Instrum.
85
,
11D611
(
2014
).
19.
M. J.
Ayers
 et al,
Proc. SPIE
9211
,
92110C
(
2014
).
20.
S. G.
Gales
and
C. D.
Bentley
,
Rev. Sci. Instrum.
75
,
4001
4003
(
2004
).
You do not currently have access to this content.