The high precision space electrostatic accelerometer is an instrument to measure the non-gravitational forces acting on a spacecraft. It is one of the key payloads for satellite gravity measurements and space fundamental physics experiments. The measurement error of the accelerometer directly affects the precision of gravity field recovery for the earth. This paper analyzes the sources of the bias according to the operating principle and structural constitution of the space electrostatic accelerometer. Models of bias due to the asymmetry of the displacement sensing system, including the mechanical sensor head and the capacitance sensing circuit, and the asymmetry of the feedback control actuator circuit are described separately. According to the two models, a method of bias self-calibration by using only the accelerometer data is proposed, based on the feedback voltage data of the accelerometer before and after modulating the DC biasing voltage (Vb) applied on its test mass. Two types of accelerometer biases are evaluated separately using in-orbit measurement data of a space electrostatic accelerometer. Based on the preliminary analysis, the bias of the accelerometer onboard of an experiment satellite is evaluated to be around 10−4 m/s2, about 4 orders of magnitude greater than the noise limit. Finally, considering the two asymmetries, a comprehensive bias model is analyzed. A modified method to directly calibrate the accelerometer comprehensive bias is proposed.

Ales (2010)
Ales
,
B.
, “
Calibration of accelerometers aboard GRACE satellites by comparison with POD-based non-gravitational accelerations
,”
J. Geodyn.
50
,
410
423
(
2010
).
Bai et al. (2010)
Bai
,
Y. Z.
,
Tian
,
W.
,
Zhou
,
Z. B.
,
Wu
,
S. C.
, and
Tu
,
H. B.
, “
High-precision space borne accelerometer and its applications
,”
Chin. J. Space Sci.
30
,
601
606
(
2010
).
Bai et al. (2009)
Bai
,
Y. Z.
,
Zhou
,
Z. B.
,
Tu
,
H. B.
,
Wu
,
S. C.
,
Cai
,
L.
,
Liu
,
L.
, and
Luo
,
J.
, “
Capacitive position measurement for high-precision space inertial sensor
,”
Front. Phys. China
4
(
2
),
205
208
(
2009
).
Bouman and Koop (2003)
Bouman
,
J.
and
Koop
,
R.
, “
Geodetic methods for calibration of GRACE and GOCE
,”
Space Sci. Rev.
108
,
293
303
(
2003
).
Bouman et al. (2004)
Bouman
,
J.
,
Koop
,
R.
,
Tscherning
,
C.
, and
Visser
,
P.
, “
Calibration of GOCE SGG data using high-low SST, terrestrial gravity data, and global gravity field models
,”
J. Geod.
78
,
124
137
(
2004
).
Bruinsma et al. (2003)
Bruinsma
,
S.
,
Loyer
,
S.
,
Lemoine
,
J. M.
,
Perosanz
,
F.
, and
Tamagnan
,
D.
, “
The impact of accelerometry on CHAMP orbit determination
,”
J. Geod.
77
,
86
93
(
2003
).
Bruinsma et al. (2004)
Bruinsma
,
S.
,
Tamagnan
,
D.
, and
Biancale
,
R.
, “
Atmospheric densities derived from CHAMP/STAR accelerometer observations
,”
Planet. Space Sci.
52
(
4
),
297
312
(
2004
).
Calabia et al. (2015)
Calabia
,
A.
,
Jin
,
S. G.
, and
Tenzer
,
R.
, “
A new GPS-based calibration of GRACE accelerometers using the arc-to-chord threshold uncovered sinusoidal disturbing signal
,”
Aerosp. Sci. Technol.
45
,
265
271
(
2015
).
Doornbos et al. (2010)
Doornbos
,
E.
,
Van den IJssel
,
J.
,
Lühr
,
H.
,
Förster
,
M.
, and
Koppenwallner
,
G.
, “
Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites
,”
J. Spacecr. Rockets
47
(
4
),
580
589
(
2010
).
Fan et al. (2012)
Fan
,
D.
,
Liu
,
Y. F.
,
Han
,
F. T.
 et al, “
Identification and adjustment of the position and attitude for the electrostatic accelerometer’s proof mass
,”
Sens. Actuators A: Phys.
187
,
190
193
(
2012
).
Frommknecht et al. (2011)
Frommknecht
,
B.
,
Lamarre
,
D.
,
Meloni
,
M.
,
Bigazzi
,
A.
, and
Floberghagen
,
R.
, “
GOCE level 1b data processing
,”
J. Geod.
85
,
759
775
(
2011
).
Guiu et al. (2007)
Guiu
,
E.
,
Rodrigues
,
M.
,
Touboul
,
P.
, and
Pradels
,
G.
, “
Calibration of MICROSCOPE
,”
Adv. Space Res.
39
,
315
323
(
2007
).
Han et al. (2016)
Han
,
F. T.
,
Liu
,
T. Y.
,
Li
,
L. L.
 et al, “
Design and fabrication of a differential electrostatic accelerometer for space-station testing of the equivalence principle
,”
Sensors
16
,
1262
(
2016
).
Josselin et al. (2010)
Josselin
,
V.
,
Touboul
,
P.
,
Rodrigues
,
M.
, and
Liorzou
,
F.
, “
MICROSCOPE on-ground and in-orbit calibration
,”
Space Sci. Rev.
151
,
25
38
(
2010
).
Josselin et al. (1999)
Josselin
,
V.
,
Touboul
,
P.
, and
Kielbasa
,
R.
, “
Capacitive detection scheme for space accelerometers applications
,”
Sens. Actuators
78
,
92
98
(
1999
).
Koop et al. (2001)
Koop
,
R.
,
Visser
,
P.
, and
Tscherning
,
C.
, “
Aspects of GOCE calibration
,” in
Proceedings of the International GOCE Users Workshop, ESTEC
,
23–24 April, 2001
. http://www.cct.gfy.ku.dk/publ_cct/cct1611.pdf.
Lenoir et al. (2013)
Lenoir
,
B.
,
Christophe
,
B.
, and
Reynaud
,
S.
, “
Unbiased acceleration measurements with an electrostatic accelerometer on a rotating platform
,”
Adv. Space Res.
51
,
188
197
(
2013
).
Pradels and Touboul (2003)
Pradels
,
G.
and
Touboul
,
P.
, “
In-orbit calibration approach of the MICROSCOPE experiment for the test of the equivalence principle at 10−5
,”
Classical Quantum Gravity
20
,
2677
2688
(
2003
).
Rispens and Bouman (2009)
Rispens
,
S.
and
Bouman
,
J.
, “
Calibrating the GOCE accelerations with star sensor data and a global gravity field model
,”
J Geodesy.
83
,
737
749
(
2009
).
Rodrigues et al. (2003)
Rodrigues
,
M.
,
Foulon
,
B.
,
Liorzou
,
F.
, and
Touboul
,
P.
, “
Flight experience on CHAMP and GRACE with ultra-sensitive accelerometers and return for LISA
,”
Classical Quantum Gravity
20
,
S291
S300
(
2003
).
Siemes et al. (2012)
Siemes
,
C.
,
Haagmans
,
R.
,
Kern
,
M.
,
Plank
,
G.
, and
Floberghagen
,
R.
, “
Monitoring GOCE gradiometer calibration parameters using accelerometer and star sensor data: Methodology and first results
,”
J. Geod.
86
,
629
645
(
2012
).
Sutton et al. (2007)
Sutton
,
E. K.
,
Nerem
,
R. S.
, and
Forbes
,
J. M.
, “
Density and winds in the thermosphere deduced from accelerometer data
,”
J. Spacecr. Rockets
44
(
6
),
1210
1219
(
2007
).
Touboul et al. (2004)
Touboul
,
P.
,
Foulon
,
B.
,
Rodrigues
,
M.
, and
Marque
,
J.
, “
In orbit nano-g measurements, lessons for future space missions
,”
Aerosp. Sci. Technol.
8
,
431
441
(
2004
).
Tu et al. (2010)
Tu
,
H. B.
,
Bai
,
Y. Z.
,
Zhou
,
Z. B.
 et al, “
Performance measurements of an inertial sensor with a two-stage controlled torsion pendulum
,”
Classical Quantum Gravity
27
,
205016
(
2010
).
Tu et al. (2014)
Tu
,
L. C.
,
Wang
,
Z. W.
,
Liu
,
J. Q.
,
Huang
,
X. Q.
,
Li
,
Z.
,
Xie
,
Y. F.
, and
Luo
,
J.
, “
Implementation of the scale factor balance on two pairs of quartz-flexure capacitive accelerometers by trimming bias voltage
,”
Rev. Sci. Instrum.
85
,
095108
(
2014
).
Van Helleputte et al. (2009)
Van Helleputte
,
T.
,
Doornbos
,
E.
, and
Visser
,
P.
, “
CHAMP and GRACE accelerometer calibration by GPS-based orbit determination
,”
Adv. Space Res.
43
,
1890
1896
(
2009
).
Visser (1999)
Visser
,
P. N. A. M.
, “
Gravity field determination with GOCE and GRACE
,”
Adv. Space Res.
23
,
771
776
(
1999
).
Visser (2008)
Visser
,
P. N. A. M.
, “
Exploring the possibilities for star-tracker assisted calibration of the six individual GOCE accelerometers
,”
J. Geod.
82
,
591
600
(
2008
).
Visser (2009)
Visser
,
P. N. A. M.
, “
GOCE gradiometer: Estimation of biases and scale factors of all six individual accelerometers by precise orbit determination
,”
J. Geod.
83
,
69
85
(
2009
).
Visser and Van den IJssel (2016)
Visser
,
P. N. A. M.
and
Van den IJssel
,
J.
, “
Calibration and validation of individual GOCE accelerometers by precise orbit determination
,”
J. Geod.
90
,
1
13
(
2016
).
Willemenot et al. (1999)
Willemenot
,
E.
,
Touboul
,
P.
, and
Josselin
,
V.
, “
Gradiometer calibration and performance verification: GOCE approach
,”
Boll. Geofis. Teor. Appl.
40
,
527
532
(
1999
), see http://www3.ogs.trieste.it/bgta/provapage.php?id_articolo=290.
Zhou et al. (2009)
Zhou
,
Z. B.
,
Bai
,
Y. Z.
,
Zhu
,
Z.
 et al, “
In-orbit calibration methods of accelerometer parameters on satellite-borne gravimetry
,”
Chin. Space Sci. Technol.
6
,
74
80
(
2009
).
Zhou et al. (2005)
Zhou
,
Z. B.
,
Gao
,
S. W.
, and
Luo
,
J.
, “
Torsion pendulum for the performance test of the inertial sensor for ASTROD-I
,”
Classical Quantum Gravity
22
,
S537
S542
(
2005
).
You do not currently have access to this content.