Image reconstruction in electrical capacitance tomography is an ill-posed inverse problem, and regularization techniques are usually used to solve the problem for suppressing noise. An anisotropic regional regularization algorithm for electrical capacitance tomography is constructed using a novel approach called spectral transformation. Its function is derived and applied to the weighted gradient magnitude of the sensitivity of Laplacian as a regularization term. With the optimum regional regularizer, the a priori knowledge on the local nonlinearity degree of the forward map is incorporated into the proposed online reconstruction algorithm. Simulation experimentations were performed to verify the capability of the new regularization algorithm to reconstruct a superior quality image over two conventional Tikhonov regularization approaches. The advantage of the new algorithm for improving performance and reducing shape distortion is demonstrated with the experimental data.

1.
C. G.
Xie
,
S. M.
Huang
,
B. S.
Hoyle
,
R.
Thorn
,
C.
Lenn
,
D.
Snowden
, and
M. S.
Beck
,
IEE Proc. G, Circuits, Devices Syst.
139
,
89
97
(
1992
).
2.
A.
Rezvanpour
,
C. H.
Wang
,
Y. C.
Liang
, and
W. Q.
Yang
,
Meas. Sci. Technol.
23
,
1
10
(
2012
).
3.
W. Q.
Yang
and
L. H.
Peng
,
Meas. Sci. Technol.
14
,
R1
R13
(
2003
).
4.
L. H.
Peng
,
H.
Merkus
, and
B.
Scarlett
,
Part. Part. Syst. Charact.
17
,
96
104
(
2000
).
5.
W. R. B.
Lionheart
,
Process Tomography
(
Hannover
,
2001
), pp.
4
11
.
6.
Y.
Li
,
T.
Huang
,
X.
Zhang
 et al.,
Mol. Imaging
14
,
516
523
(
2015
), available online at http://mix.sagepub.com/content/14/9/7290.2015.00024.short.
7.
M.
Soleimani
and
W. R. B.
Lionheart
,
Meas. Sci. Technol.
16
,
1987
1996
(
2005
).
8.
X.
Chen
,
H. L.
Hu
,
F.
Liu
, and
X. X.
Gao
,
Meas. Sci. Technol.
22
,
104008
(
2011
).
9.
M.
Vauhkonen
,
D.
Vadasz
,
J. P.
Kaipio
,
E.
Somersalo
, and
P. A.
Karjalainen
,
IEEE Trans. Med. Imaging
17
,
285
293
(
1998
).
10.
A.
Adler
and
R.
Guardo
,
IEEE Trans. Med. Imaging
15
,
170
179
(
1996
).
11.
A. N.
Tikhonov
and
V. Y.
Arsenin
,
Solution of Ill-Posed Problems
(
V.H.Winston & Sons
,
Washington, DC
,
1977
).
12.
L. H.
Peng
,
P.
Jiang
,
G.
Lu
, and
D. Y.
Xiao
,
Flow Meas. Instrum.
18
(
5–6
),
277
284
(
2007
).
13.
B.
Brandstatter
,
G.
Holler
, and
D.
Watzenig
,
COMPEL - Int. J. Comput. Math. Electr. Electron. Eng.
22
(
3
),
508
519
(
2003
).
14.
M.
Soleimani
,
K.
Yalavarthy
, and
H.
Dehghani
,
IEEE Trans. Instrum. Meas.
59
(
1
),
78
83
(
2010
).
15.
Z. H.
Guo
,
F. Q.
Shao
, and
D. C.
Lv
,
Flow Meas. Instrum.
20
(
3
),
95
102
(
2009
).
16.
A.
Smola
and
R.
Kondor
, in
Kernels and regularization on graphs. In Conference on Learning Theory, COLT/KW
,
2003
.
You do not currently have access to this content.