This paper proposes a novel bionic model of the human leg according to the theory of physiology. Based on this model, we present a biologically inspired 3-degree of freedom (DOF) lower limb exoskeleton for human gait rehabilitation, showing that the lower limb exoskeleton is fully compatible with the human knee joint. The exoskeleton has a hybrid serial-parallel kinematic structure consisting of a 1-DOF hip joint module and a 2-DOF knee joint module in the sagittal plane. A planar 2-DOF parallel mechanism is introduced in the design to fully accommodate the motion of the human knee joint, which features not only rotation but also relative sliding. Therefore, the design is consistent with the requirements of bionics. The forward and inverse kinematic analysis is studied and the workspace of the exoskeleton is analyzed. The structural parameters are optimized to obtain a larger workspace. The results using MATLAB-ADAMS co-simulation are shown in this paper to demonstrate the feasibility of our design. A prototype of the exoskeleton is also developed and an experiment performed to verify the kinematic analysis. Compared with existing lower limb exoskeletons, the designed mechanism has a large workspace, while allowing knee joint rotation and small amount of sliding.

1.
N. M.
Crewe
and
J. S.
Krause
,
Medical, Psychosocial and Vocational Aspects of Disability
(
Elliott and Fitzpatrick
,
Athens
,
2009
), pp.
289
304
.
2.
S. J.
Olney
and
C.
Richards
,
Gait Posture
4
,
136
(
1996
).
3.
E.
Taub
,
G.
Uswatte
, and
T.
Elbert
,
Nat. Rev. Neurosci.
3
,
228
(
2002
).
4.
C. D.
Takahashi
,
L.
Der-Yeghiaian
,
V.
Le
,
R. R.
Motiwala
, and
S. C.
Cramer
,
Brain
131
,
425
(
2008
).
5.
M.
Knikou
and
C. K.
Mummidisetty
,
J. Neurophysiol.
111
,
2264
(
2014
).
6.
A. M.
Dollar
and
H.
Herr
,
IEEE Trans. Rob.
24
,
144
(
2008
).
7.
G.
Colombo
,
M.
Joerg
,
R.
Schreier
, and
V.
Dietz
,
J. Rehabil. Res. Dev.
37
,
693
(
2000
).
8.
S.
Jezernik
,
G.
Colombo
, and
M.
Morari
,
IEEE Trans. Rob. Autom.
20
,
574
(
2004
).
9.
R.
Riener
,
L.
Lünenburger
,
I. C.
Maier
, and
G.
Colombo
,
J. Healthcare Eng.
1
,
197
(
2010
).
10.
J. F.
Veneman
,
R.
Ekkelenkamp
,
R.
Kruidhof
,
F. C. T.
Van Der Helm
, and
H.
Van Der Kooij
,
Int. J. Rob. Res.
25
,
261
(
2006
).
11.
H.
Vallery
,
J.
Veneman
,
E.
Van Asseldonk
,
R.
Ekkelenkamp
,
M.
Buss
, and
H.
Van Der Kooij
,
IEEE Rob. Autom. Mag.
15
,
60
(
2008
).
12.
S. K.
Banala
,
S. H.
Kim
,
S. K.
Agrawal
, and
J. P.
Scholz
,
IEEE Trans. Neural Syst. Rehabil. Eng.
17
,
2
(
2009
).
13.
D.
Zanotto
,
P.
Stegall
, and
S. K.
Agrawal
, in
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2014
), pp.
724
729
.
14.
M.
Bouri
,
Y.
Stauffer
,
C.
Schmitt
,
Y.
Allemand
,
S.
Gnemmi
, and
R.
Clavel
, in
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
IEEE
,
2006
), pp.
1616
1621
.
15.
Y.
Stauffer
,
Y.
Allemand
,
M.
Bouri
,
J.
Fournier
,
R.
Clavel
,
P.
Metrailler
,
R.
Brodard
, and
F.
Reynard
,
IEEE Trans. Neural Syst. Rehabil. Eng.
17
,
38
(
2009
).
16.
I.
Díaz
,
J. J.
Gil
, and
E.
Sánchez
,
J. Robotics
2011
, Article ID
759764
(
2011
).
17.
H.
Kawamoto
and
Y.
Sankai
,
Computers Helping People with Special Needs
(
Springer Berlin Heidelberg
,
2002
), pp.
196
203
.
18.
T.
Hayashi
,
H.
Kawamoto
, and
Y.
Sankai
, in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
IEEE
,
2005
), pp.
3063
3068
.
19.
K. H.
Low
, in
Proceedings of the IEEE International Conference on Defense Science Research Conference and Expo (DSR)
(
IEEE
,
2011
), pp.
1
10
.
20.
E.
Strickland
, “
Good-bye, wheelchair
,”
IEEE Spectrum
49
(
1
),
30
32
(
2012
).
21.
R. J.
Farris
,
H. A.
Quintero
,
S. A.
Murray
,
K. H.
Ha
,
C.
Hartigan
, and
M.
Goldfarb
,
IEEE Trans. Neural Syst. Rehabil. Eng.
22
,
482
(
2014
).
22.
C.
Schmitt
and
P.
Métrailler
, in
9th Annual Conference of the International FES Society. No. LSRO2-CONF-2006-010
(
2004
).
23.
G.
Aguirre-Ollinger
,
J. E.
Colgate
,
M. A.
Peshkin
, and
A.
Goswami
,
IEEE Trans. Neural Syst. Rehabil. Eng.
20
,
68
(
2012
).
24.
H.
Iwaki
,
V.
Pinskerova
, and
M. A. R.
Freeman
,
J. Bone Jt. Surg.
82
,
1189
(
2000
).
25.
K.-M.
Lee
and
J.
Guo
,
J. Biomech.
43
,
1231
(
2010
).
26.
D.
Wang
,
K.-M.
Lee
,
J.
Guo
, and
C.-J.
Yang
,
IEEE/ASME Trans. Mechatronics
19
,
1268
(
2014
).
27.
M. A.
Ergin
and
V.
Patoglu
, in
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(
IEEE
,
2011
), pp.
4917
4922
.
28.
D.
Jin
,
R.
Zhang
,
H. O.
Dimo
,
R.
Wang
, and
J.
Zhang
,
J. Rehabil. Res. Dev.
40
,
39
(
2003
).
30.
K. M.
Lee
and
J.
Guo
, in
IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
(
IEEE
,
2009
), pp.
30
35
.
31.
L. W.
Tsai
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
(
John Wiley & Sons
,
1999
), pp.
223
259
.
32.
J.
Apkarian
,
S.
Naumann
, and
B.
Cairns
,
J. Biomech.
22
,
143
(
1989
).
33.
D. A.
Winter
,
Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
(
University of Waterloo Press
,
1991
).
34.
C.
Liao
,
J.
Zhang
,
W.
Chen
, and
M.
Lv
, in
IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)
(
IEEE
,
2015
), pp.
557
562
.
You do not currently have access to this content.