High energy resolution, hard X-ray spectroscopies are powerful element selective probes of the electronic and local structure of matter, with diverse applications in chemistry, physics, biology, and materials science. The routine application of these techniques is hindered by the complicated and slow access to synchrotron radiation facilities. Here we propose a new, economic, easily operated laboratory high resolution von Hámos type X-ray spectrometer, which offers rapid transmission experiments for X-ray absorption and is also capable of recording X-ray emission spectra. The use of a cylindrical analyzer crystal and a position sensitive detector enabled us to build a robust, flexible setup with low operational costs, while delivering synchrotron grade signal to noise measurements in reasonable acquisition times. We demonstrate the proof of principle and give examples for both measurement types. Finally, tracking of a several day long chemical transformation, a case better suited for laboratory than synchrotron investigation, is also presented.

1.
G.
Bunker
, in
Introduction to XAFS A Practical Guide to X-ray Absorption Fine Structure Spectroscopy
, edited by
G.
Bunker
(
Cambridge University Press
,
2010
).
2.
D.
Koningsberger
and
R.
Prins
, in
X-Ray Absorption Principles, Applications, Techniques of EXAFS, SEXAFS and XANES Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications
, edited by
D.
Koningsberger
and
R.
Prins
(
Wiley & Sons Ltd.
,
1987
).
3.
E. A.
Stern
and
S. M.
Heald
, in
Handbook of Synchrotron Radiation: Basic Principles and Applications of EXAFS
, edited by
E. E.
Koch
(
North-Holland
,
1983
), Chap. 10, pp.
995
1014
.
4.
P.
Glatzel
and
U.
Bergmann
,
Coord. Chem. Rev.
249
,
65
(
2005
).
5.
F. M. F.
de Groot
,
Chem. Rev.
101
,
1779
(
2001
).
6.
R.
Torchio
,
O.
Mathon
, and
S.
Pascarelli
,
Coord. Chem. Rev.
277–278
,
80
(
2014
).
7.
J.-P.
Rueff
and
A.
Shukla
,
Rev. Mod. Phys.
82
,
847
(
2010
).
8.
M.
Rovezzi
and
P.
Glatzel
,
Semicond. Sci. Technol.
29
,
023002
(
2014
).
9.
G. T.
Seidler
,
D. R.
Mortensen
,
A. J.
Remesnik
,
J. I.
Pacold
,
N. A.
Ball
,
N.
Barry
,
M.
Styczinski
, and
O. R.
Hoidn
,
Rev. Sci. Instrum.
85
,
113906
(
2014
).
10.
D. R.
Mortensen
,
G. T.
Seidler
,
A. S.
Ditter
, and
P.
Glatzel
, e-print arXiv:1509.05711 [cond-mat.mtrl-sci] (2015).
11.
G. T.
Seidler
,
D. R.
Mortensen
,
A. S.
Ditter
,
N. A.
Ball
, and
A. J.
Remesnik
, e-print arXiv:1509.05708 [physics.ins-det] (2015).
12.
J.
Uhlig
,
W.
Fullagar
,
J. N.
Ullom
,
W. B.
Doriese
,
J. W.
Fowler
,
D. S.
Swetz
,
N.
Gador
,
S. E.
Canton
,
K.
Kinnunen
,
I. J.
Maasilta
,
C. D.
Reintsema
,
D. A.
Bennett
,
L. R.
Vale
,
G. C.
Hilton
,
K. D.
Irwin
,
D. R.
Schmidt
, and
V.
Sundström
,
Phys. Rev. Lett.
110
,
138302
(
2013
).
13.
Y. I.
Joe
,
G. C.
O’Neil
,
L.
Miaja-Avila
,
J. W.
Fowler
,
R.
Jimenez
,
K. L.
Silverman
,
D. S.
Swetz
, and
J. N.
Ullom
,
J. Phys. B: At., Mol. Opt. Phys.
49
,
024003
(
2016
).
14.
J.
Szlachetko
,
M.
Nachtegaal
,
E.
de Boni
,
M.
Willimann
,
O.
Safonova
,
J.
Sa
,
G.
Smolentsev
,
M.
Szlachetko
,
J. A.
van Bokhoven
,
J.-C.
Dousse
,
J.
Hoszowska
,
Y.
Kayser
,
P.
Jagodzinski
,
A.
Bergamaschi
,
B.
Schmitt
,
C.
David
, and
A.
Lücke
,
Rev. Sci. Instrum.
83
,
103105
(
2012
).
15.
R.
Alonso Mori
,
J.
Kern
,
D.
Sokaras
,
T.-C.
Weng
,
D.
Nordlund
,
R.
Tran
,
P.
Montanez
,
J.
Delor
,
V. K.
Yachandra
,
J.
Yano
, and
U.
Bergmann
,
Rev. Sci. Instrum.
83
,
073114
(
2012
).
16.
J.
Hoszowska
and
J.-C.
Dousse
,
J. Electron Spectrosc. Relat. Phenom.
137–140
,
687
(
2004
).
17.
P.
Lecante
,
J.
Jaud
,
A.
Mosset
,
J.
Galy
, and
A.
Burian
,
Rev. Sci. Instrum.
65
,
845
(
1994
).
18.
Y.
Inada
,
S.
Funahashi
, and
H.
Ohtaki
,
Rev. Sci. Instrum.
65
,
18
(
1994
).
19.
C.
Schlesiger
,
L.
Anklamm
,
H.
Stiel
,
W.
Malzer
, and
B.
Kanngießer
,
J. Anal. At. Spectrom.
30
,
1080
(
2015
).
20.
Y.
Kayser
,
W.
Błachucki
,
J.-C.
Dousse
,
J.
Hoszowska
,
M.
Neff
, and
V.
Romano
,
Rev. Sci. Instrum.
85
,
043101
(
2014
).
21.
G.
Vankó
,
P.
Glatzel
,
V.-T.
Pham
,
R.
Abela
,
D.
Grolimund
,
C. N.
Borca
,
S. L.
Johnson
,
C. J.
Milne
, and
C.
Bressler
,
Angew. Chem., Int. Ed.
49
,
5910
(
2010
).
22.
A. M.
March
,
T. A.
Assefa
,
C.
Bressler
,
G.
Doumy
,
A.
Galler
,
W.
Gawelda
,
E. P.
Kanter
,
Z.
Németh
,
M.
Pápai
,
S. H.
Southworth
,
L.
Young
, and
G.
Vankó
,
J. Phys. Chem. C
119
,
14571
(
2015
).
23.
M.
Alain
,
M.
Jacques
,
M.-B.
Diane
, and
P.
Karine
,
J. Phys.: Conf. Ser.
190
,
012034
(
2009
).
24.
D.
Pan
,
J. K.
Jian
,
A.
Ablat
,
J.
Li
,
Y. F.
Sun
, and
R.
Wu
,
J. Appl. Phys.
112
,
053911
(
2012
).
25.
P.
Glatzel
,
G.
Smolentsev
, and
G.
Bunker
,
J. Phys.: Conf. Ser.
190
,
012046
(
2009
).
26.
K.
Mori
,
T.
Taga
, and
H.
Yamashita
,
ChemCatChem
7
,
1285
(
2015
).
27.
K.
Tirez
,
G.
Silversmit
,
L.
Vincze
,
K.
Servaes
,
C.
Vanhoof
,
M.
Mertens
,
N.
Bleux
, and
P.
Berghmans
,
J. Anal. At. Spectrom.
26
,
517
(
2011
).
28.
M.
Medarde
,
C.
Dallera
,
M.
Grioni
,
B.
Delley
,
F.
Vernay
,
J.
Mesot
,
M.
Sikora
,
J. A.
Alonso
, and
M. J.
Martínez-Lope
,
Phys. Rev. B
80
,
245105
(
2009
).
29.
N.
Zhang
,
J.
Brugger
,
B.
Etschmann
,
Y.
Ngothai
, and
D.
Zeng
,
PLoS ONE
10
,
1
(
2015
).
30.
R. J.
Woolley
,
B. N.
Illy
,
M. P.
Ryan
, and
S. J.
Skinner
,
J. Mater. Chem.
21
,
18592
(
2011
).
31.
W. E.
O’Grady
,
K. I.
Pandya
,
K. E.
Swider
, and
D. A.
Corrigan
,
J. Electrochem. Soc.
143
,
1613
(
1996
).
32.
G.
Vankó
,
T.
Neisius
,
G.
Molnár
,
F.
Renz
,
S.
Kárpáti
,
A.
Shukla
, and
F. M. F.
de Groot
,
J. Phys. Chem. B
110
,
11647
(
2006
).
You do not currently have access to this content.