The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.

1.
D. A.
Young
,
Nature
182
,
375
377
(
1958
).
2.
Q.
Hung Nguyen
,
M.
Ali
,
R.
Neumann
, and
W.
Ensinger
,
Sens. Actuators, B
162
(
1
),
216
222
(
2012
).
3.
O.
Ochedowski
,
O.
Osmani
,
M.
Schade
,
B.
Kleine Bussmann
,
B.
Ban-d’Etat
,
H.
Lebius
, and
M.
Schleberger
,
Nat. Commun.
5
,
3913
(
2014
).
4.
O.
Ochedowski
,
H.
Bukowska
,
V. M.
Freire Soler
,
L.
Brökers
,
B.
Ban-d’Etat
,
H.
Lebius
, and
M.
Schleberger
,
Nucl. Instrum. Methods Phys. Res., Sect. B
340
,
39
43
(
2014
).
5.
M. C.
Ridgway
,
T.
Bierschenk
,
R.
Giulian
,
B.
Afra
,
M. D.
Rodriguez
,
L. L.
Araujo
,
A. P.
Byrne
,
N.
Kirby
,
O. H.
Pakarinen
,
F.
Djurabekova
,
K.
Nordlund
,
M.
Schleberger
,
O.
Osmani
,
N.
Medvedev
,
B.
Rethfeld
, and
P.
Kluth
,
Phys. Rev. Lett.
110
,
245502
(
2013
).
6.
F.
Aumayr
,
S.
Facsko
,
A.
El-Said
,
C.
Trautmann
, and
M.
Schleberger
,
J. Phys.: Condens. Matter
23
,
393001
(
2011
).
7.
E.
Akcöltekin
,
S.
Akcöltekin
,
O.
Osmani
,
A.
Duvenbeck
,
H.
Lebius
, and
M.
Schleberger
,
New J. Phys.
10
,
053007
(
2008
).
8.
M.
Toulemonde
,
C.
Dufour
, and
E.
Paumier
,
Phys. Rev. B
46
,
14362
(
1992
).
9.
S.
Klaumünzer
, in
Ion Beam Science Matematisk-Fysiske Meddelelser
, edited by
P.
Sigmund
(
Det Kongelige Danske Videnskabernes Selskab
,
2006
), Vol.
52
, pp.
293
328
, ISBN: 87-7304-330-3.
10.
M.
Toulemonde
,
C.
Dufour
, and
E.
Paumier
,
Acta Phys. Pol. A
109
,
311
(
2006
), http://przyrbwn.icm.edu.pl/APP/PDF/109/a109z309.pdf.
11.
G.
Betz
and
K.
Wien
,
Int. J. Mass Spectrom. Ion Processes
140
(
1
),
1
110
(
1994
).
12.
H.
Hijazi
,
H.
Rothard
,
P.
Boduch
,
I.
Alzaher
,
A.
Cassimi
,
F.
Ropars
,
T.
Been
,
J. M.
Ramillon
,
H.
Lebius
,
B.
Ban-d’Etat
,
L. S.
Farenzena
, and
E. F.
da Silveira
,
Eur. Phys. J. D
66
,
68
(
2012
).
13.
H.
Hijazi
,
H.
Rothard
,
P.
Boduch
,
I.
Alzaher
,
Th.
Langlinay
,
A.
Cassimi
,
F.
Ropars
,
T.
Been
,
J. M.
Ramillon
,
H.
Lebius
,
B.
Ban-d’Etat
,
L. S.
Farenzena
, and
E. F.
da Silveira
,
Eur. Phys. J. D
66
,
305
(
2012
).
14.
R. E.
Johnson
and
W. L.
Brown
,
Nucl. Instrum. Methods Phys. Res.
209-210
,
469
476
(
1983
).
15.
P. K.
Haff
,
Appl. Phys. Lett.
29
,
473
(
1976
).
16.
R. L.
Fleischer
,
P. B.
Price
, and
R. M.
Walker
,
J. Appl. Phys.
36
,
3645
(
1965
).
17.
M.
Karlusić
,
S.
Akcöltekin
,
O.
Osmani
,
I.
Monnet
,
H.
Lebius
,
M.
Jaksić
, and
M.
Schleberger
,
New J. Phys.
12
,
043009
(
2010
).
18.
C.
Müller
,
M.
Cranney
,
A.
El-Said
,
N.
Ishikawa
,
A.
Iwase
,
M.
Lang
, and
R.
Neumann
,
Nucl. Instrum. Methods Phys. Res., Sect. B
191
(
1–4
),
246
250
(
2002
).
19.
M.
Karlušić
,
R.
Kozubek
,
H.
Lebius
,
B.
Ban-d’Etat
,
R. A.
Wilhelm
,
M.
Buljan
,
Z.
Siketić
,
F.
Scholz
,
T.
Meisch
,
M.
Jakšić
,
S.
Bernstorff
,
M.
Schleberger
, and
B.
Santić
,
J. Phys. D: Appl. Phys.
48
,
325304
(
2015
).
20.
See supplementary material at http://dx.doi.org/10.1063/1.4939899 for a schematic overview of the setup presented in Figure S1, for an image of the transfer adapter shown in Figure S2, and for the mechanical design and schematic working principle of photoelectric detector presented in Figure S3.
21.
S.
Amirthapandian
,
F.
Schuchart
, and
W.
Bolse
,
Rev. Sci. Instrum.
81
,
033702
(
2010
).
22.
M.
Wahl
, Ph.D. thesis,
Universität Kaiserslautern
,
1995
.
23.
L.
Breuer
, Ph.D. thesis,
Universität Duisburg-Essen
,
2015
.
24.
M.
Nonnenmacher
,
M. P.
O’Boyle
, and
H. K.
Wickramasinghe
,
Appl. Phys. Lett.
58
,
2921
2923
(
1991
).
25.
A.
Labuda
,
Y.
Miyahara
,
L.
Cockins
, and
P. H.
Grütter
,
Phys. Rev. B
84
,
125433
(
2011
).
26.
N.
Khalfaoui
,
M.
Görlich
,
C.
Müller
,
M.
Schleberger
, and
H.
Lebius
,
Nucl. Instrum. Methods Phys. Res., Sect. B
245
,
246
(
2006
).
27.
S.
Akcöltekin
,
E.
Akcöltekin
,
T.
Roll
,
H.
Lebius
, and
M.
Schleberger
,
Nucl. Instrum. Methods Phys. Res., Sect. B
267
(
8–9
),
1386
1389
(
2009
).
28.
O.
Ochedowski
,
S.
Akcöltekin
,
B.
Ban-d’Etat
,
H.
Lebius
, and
M.
Schleberger
,
Nucl. Instrum. Methods Phys. Res., Sect. B
314
,
18
(
2013
).

Supplementary Material

You do not currently have access to this content.