In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles’ velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

1.
J. P.
Sharpe
,
D. A.
Petti
, and
H.-W.
Bartels
, “
A review of dust in fusion devices: Implications for safety and operational performance
,”
Fusion Eng. Des.
63-64
,
153
163
(
2002
).
2.
A.
Malizia
,
I.
Lupelli
,
M.
Richetta
,
M.
Gelfusa
,
C.
Bellecci
, and
P.
Gaudio
, “
Safety analysis in large volume vacuum systems like tokamak: Experiments and numerical simulation to analyze vacuum ruptures consequences
,”
Adv. Mater. Sci. Eng.
2014
,
1
.
3.
M.
Benedetti
,
P.
Gaudio
,
I.
Lupelli
,
A.
Malizia
,
M. T.
Porfiri
, and
M.
Richetta
, “
Large eddy simulation of loss of vacuum accident in STARDUST facility
,”
Fusion Eng. Des.
88
(
9-10
),
2665
2668
(
2013
).
4.
C.
Bellecci
,
P.
Gaudio
,
I.
Lupelli
,
A.
Malizia
,
M. T.
Porfiri
,
R.
Quaranta
, and
M.
Richetta
, “
Loss of vacuum accident (LOVA): Comparison of computational fluid dynamics (CFD) flow velocities against experimental data for the model validation
,”
Fusion Eng. Des.
86
(
4–5
),
330
340
(
2013
).
5.
C.
Bellecci
,
P.
Gaudio
,
I.
Lupelli
,
A.
Malizia
,
M. T.
Porfiri
,
R.
Quaranta
, and
M.
Richetta
, “
Experimental mapping of velocity flow field in case of L.O.V.A inside stardust facility
,” in
37th EPS Conference on Plasma Physics 2010, EPS 2010
,
Dublin, Ireland
(
2010
), Vol.
2
, pp.
703
706
, Code 96274; available online at http://ocs.ciemat.es/EPS2010PAP/pdf/P2.104.pdf.
6.
I.
Lupelli
,
P.
Gaudio
,
M.
Gelfusa
,
A.
Malizia
,
I.
Belluzzo
, and
M.
Richetta
, “
Numerical study of air jet flow field during a loss of vacuum
,”
Fusion Eng. Des.
89
,
2048
(
2014
).
7.
A.
Malizia
,
M.
Gelfusa
,
G.
Francia
,
M.
Boccitto
,
M.
Del Vecchio
,
D.
Di Giovanni
,
M.
Richetta
,
C.
Bellecci
, and
P.
Gaudio
, “
Design of a new experimental facility to reproduce LOVA and LOCA consequences on dust resuspension
,”
Fusion Eng. Des.
98-99
,
2191
(
2014
).
8.
L. A.
Poggi
,
A.
Malizia
,
J. F.
Ciparisse
,
M.
Gelfusa
,
A.
Murari
,
S.
Pierdiluca
,
E.
Lo Re
, and
P.
Gaudio
, “
First experimental campaign to demonstrate stardust-upgrade facility diagnostics capability to investigate LOVA conditions
,”
J. Fusion Energy
34
,
1320
(
2015
).
9.
I.
Lupelli
 et al,
J. Fusion Energy
34
,
959
(
2015
).
10.
A.
Malizia
 et al, “
The free license codes as decision support system (DSS) for the emergency planning to simulate radioactive releases in case of accidents in the new generation energy plants
,”
WSEAS Trans. Environ. Dev.
10
(
1
),
453
464
(
2014
); available online at http://www.scopus.com/inward/record.url?eid=2-s2.0-84912575048&partnerID=40&md5=7bd973c142d60d5923749f0b2c376401.
11.
D.
Di Giovanni
,
E.
Luttazzi
,
F.
Marchi
,
G.
Latini
,
M.
Carestia
,
A.
Malizia
,
M.
Gelfusa
,
R.
Fiorito
,
F.
D’Amico
,
O.
Cenciarelli
,
A.
Gucciardino
,
C.
Bellecci
, and
P.
Gaudio
, “
Two realistic scenarios of intentional release of radionuclides (Cs-137, Sr-90) - The use of the HotSpot code to forecast contamination extent
,”
WSEAS Trans. Environ. Dev.
10
,
106
122
(
2014
); available online at http://www.scopus.com/inward/record.url?eid=2-s2.0-84901191064&partnerID=40&md5=45662cf3714711685d580f85952d67a2.
12.
R.
Gallo
,
P.
De Angelis
,
A.
Malizia
,
F.
Conetta
,
D.
Di Giovanni
,
L.
Antonelli
,
N.
Gallo
,
A.
Fiduccia
,
F.
D’Amico
,
R.
Fiorito
,
M.
Richetta
,
C.
Bellecci
, and
P.
Gaudio
, “
Development of a georeferencing software for radiological diffusion in order to improve the safety and security of first responders
,”
Defence S and T Technical Bulletin
6
(
1
),
21
32
(
2013
); available online at http://www.scopus.com/inward/record.url?eid=2-s2.0-84878724291&partnerID=40&md5=1139619dfcf76f00f6ecac398f7a92c0.
14.
A.
Malizia
 et al, “
Dust tracking techniques applied at STARDUST facility: First results
,”
Fusion Eng. Des.
89
,
2098
(
2014
).
15.
P.
Gaudio
,
A.
Malizia
, and
I.
Lupelli
, “
Experimental and numerical analysis of dust resuspension for supporting chemical and radiological risk assessment in a nuclear fusion device
,” in
International Conference on Mathematical Models for Engineering Science, Proceedings 2010
(
WSEAS Publications
,
2010
), pp.
134
147
, Code 85150; available online at http://www.wseas.us/e-library/conferences/2010/Tenerife/MMES/MMES-21.pdf.
16.
R. C.
Gonzalez
and
R. E.
Woods
,
Digital Image Processing
(
Addison Wesley
,
1992
).
17.
F. J.
Weinberg
,
Optics of Flames Including Methods for the Study of Refractive Index Fields in Combustion and Aerodynamics
(
Butterworths
,
London
,
1963
).
18.
C.
Stauffer
and
W. E. L.
Grimson
, “
Adaptive background mixture models for real-time tracking
,” in
IEEE Conference on Computer Vision and Pattern Recognition
(
Massachusetts Institute of Technology, Cambridge, MA
,
1999
), pp.
246
252
; available online at: http://www.ai.mit.edu/projects/vsam/Publications/stauffer_cvpr98_track.pdf.
19.
W. U.
Boeglin
,
L.
Roquemore
, and
R.
Maqueda
, “
Three-dimensional reconstruction of dust particle trajectories in the NSTX
,”
Rev. Sci. Instrum.
79
(
10
),
10F334
(
2008
).
20.
A.
Yilmaz
,
O.
Javed
, and
M.
Shah
, “
Object tracking
,”
ACM Comput. Surv.
38
(
4
),
13
(
2006
).
21.
J.
Munkres
, “
Algorithms for the assignment and transportation problems
,”
J. Soc. Ind. Appl. Math.
5
(
1
),
32
38
(
1957
).
You do not currently have access to this content.