The rotating waveplate Stokes polarimeter was developed for ITER (International Thermonuclear Experimental Reactor) poloidal polarimeter. The generalized model of the rotating waveplate Stokes polarimeter and the algorithm suitable for real-time field-programmable gate array (FPGA) processing were proposed. Since the generalized model takes into account each component associated with the rotation of the waveplate, the Stokes parameters can be accurately measured even in unideal condition such as non-uniformity of the waveplate retardation. Experiments using a He-Ne laser showed that the maximum error and the precision of the Stokes parameter were 3.5% and 1.2%, respectively. The rotation speed of waveplate was 20 000 rpm and time resolution of measuring the Stokes parameter was 3.3 ms. Software emulation showed that the real-time measurement of the Stokes parameter with time resolution of less than 10 ms is possible by using several FPGA boards. Evaluation of measurement capability using a far-infrared laser which ITER poloidal polarimeter will use concluded that measurement error will be reduced by a factor of nine.

1.
A. E.
Costley
,
S.
Allen
,
P.
Andrew
,
L.
Bertalot
,
R.
Barnsley
,
X. R.
Duan
,
A.
Encheva
,
C.
Ingesson
,
D.
Johnson
,
H. G.
Lee
,
Y.
Kawano
,
A.
Krasilnikov
,
V.
Kumar
,
Y.
Kusama
,
E.
Marmar
,
S.
Pak
,
C. S.
Pitcher
,
C. V. S.
Rao
,
G.
Saibene
,
D.
Thomas
,
P. R.
Thomas
,
P.
Vasu
,
G.
Vayakis
,
C.
Walker
,
Q. W.
Yang
,
V.
Zaveriaev
, and
J.
Zhao
, “
Measurement requirements and the diagnostic system on iter: Modifications following the design review
,” in
22nd IAEA Fusion Energy Conference, Geneva, Switzerland, 2008
.
2.
R.
Imazawa
,
Y.
Kawano
, and
Y.
Kusama
, “
A new approach of equilibrium reconstruction for iter
,”
Nucl. Fusion
51
,
113022
(
2011
).
3.
R.
Imazawa
,
Y.
Kawano
,
T.
Akiyama
,
K.
Nakayama
, and
K.
Itami
, “
Polarization measurement techniques suitable for iter poloidal polarimeter
,” in
Proceedings of the 41st Plasma Physics Conference on Plasma Physics (EPS2014)
(
IOP
,
Berlin, Germany
,
2014
), p.
P5.008
.
4.
G.
Vayakis
,
C.
Watts
,
R.
Reichle
,
M.
Walsh
,
R.
Barnsley
,
L.
Bertalot
,
S.
Pitcher
,
V.
Udintsev
,
E.
Veshchev
,
P.
Andrew
,
R.
Bouhamou
, and
J.
Snipes
, “
Evolution of the iter diagnostic set specifications
,” in
24th IAEA Fusion Energy Conference, San Diego, USA, 2012
.
5.
L.
Giudicotti
,
S. L.
Prunty
,
C.
Nyhan
,
E.
Bedin
,
E.
Zilli
, and
L. D.
Pasqual
, “
A polarization modulation technique for far-infrared polarimetry in large plasmas
,”
Plasma Phys. Controlled Fusion
46
,
681
(
2004
).
6.
R.
Imazawa
,
Y.
Kawano
, and
Y.
Kusama
, “
Highly accurate approximate solutions of the stokes equation for high electron density and long laser wavelength
,”
Plasma Phys. Controlled Fusion
54
,
055005
(
2012
).
7.
S.
Okajima
,
K.
Kawahata
,
A.
Ejiri
,
K.
Tanaka
,
Y.
Hamada
, and
J.
Fujita
, in
Proceedings of the 7th International Symposium on Laser Aided Plasma Diagnostics
(
Fukuoka, Japan
,
1995
), p.
148
.
8.
S.
Okajima
,
K.
Nakayama
,
H.
Tazawa
,
K.
Kawahata
,
K.
Tanaka
,
T.
Tokuzawa
,
Y.
Ito
, and
K.
Mizuno
, “
Development of short-wavelength far-infrared laser for high density plasma diagnostics
,”
Rev. Sci. Instrum.
72
,
1094
(
2001
).
9.
H.
Ohkuma
,
M.
Shoji
,
S.
Suzuki
,
K.
Tamura
, and
T.
Yorita
, in
Proceedings of EPAC 2006
(
Edinburgh, Scotland
,
2006
), pp.
961
963
.
You do not currently have access to this content.