We report on the development and characterization of novel 4.596 GHz and 6.834 GHz microwave frequency synthesizers devoted to be used as local oscillators in high-performance Cs and Rb vapor-cell atomic clocks. The key element of the synthesizers is a custom module that integrates a high spectral purity 100 MHz oven controlled quartz crystal oscillator frequency-multiplied to 1.6 GHz with minor excess noise. Frequency multiplication, division, and mixing stages are then implemented to generate the exact output atomic resonance frequencies. Absolute phase noise performances of the output 4.596 GHz signal are measured to be −109 and −141 dB rad2/Hz at 100 Hz and 10 kHz Fourier frequencies, respectively. The phase noise of the 6.834 GHz signal is −105 and −138 dB rad2/Hz at 100 Hz and 10 kHz offset frequencies, respectively. The performances of the synthesis chains contribute to the atomic clock short term fractional frequency stability at a level of 3.1 × 10−14 for the Cs cell clock and 2 × 10−14 for the Rb clock at 1 s averaging time. This value is comparable with the clock shot noise limit. We describe the residual phase noise measurements of key components and stages to identify the main limitations of the synthesis chains. The residual frequency stability of synthesis chains is measured to be at the 10−15 level for 1 s integration time. Relevant advantages of the synthesis design, using only commercially available components, are to combine excellent phase noise performances, simple-architecture, low-cost, and to be easily customized for signal output generation at 4.596 GHz or 6.834 GHz for applications to Cs or Rb vapor-cell frequency standards.

1.
See http://www.spectratime.com/products for information on performances of Rb Clocks (Spectratime).
2.
See http://www.microsemi.com/ for information on performances of Rb Clocks (Microsemi).
3.
T.
Bandi
,
C.
Affolderbach
,
C.
Stefanucci
,
F.
Merli
,
A. K.
Skrivervik
, and
G.
Mileti
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
61
(
11
),
1769
(
2014
).
4.
S.
Kang
,
M.
Gharavipour
,
C.
Affolderbach
,
F.
Gruet
, and
G.
Mileti
,
J. Appl. Phys.
117
,
104510
(
2015
).
5.
S.
Micalizio
,
C. E.
Calosso
,
A.
Godone
, and
F.
Levi
,
Metrologia
49
,
425
(
2012
).
7.
J. M.
Danet
,
M.
Lours
,
S.
Guérandel
, and
E.
De Clercq
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
61
(
4
),
567
(
2014
).
8.
Y. Y.
Jau
,
E.
Miron
,
A. B.
Post
,
N. N.
Kuzma
, and
W.
Happer
,
Phys. Rev. Lett.
93
(
16
),
160802
(
2004
).
9.
X.
Liu
,
J. M.
Mérolla
,
S.
Guérandel
,
C.
Gorecki
,
E.
De Clercq
, and
R.
Boudot
,
Phys. Rev. A
87
,
013416
(
2013
).
10.
X.
Liu
,
J. M.
Mérolla
,
S.
Guérandel
,
E.
De Clerq
, and
R.
Boudot
,
Opt. Express
21
(
10
),
12451
-
12459
(
2013
).
11.
M.
Abdel Hafiz
and
R.
Boudot
, “
Preliminar results of a Cs vapor-cell CPT clock using push-pull optical pumping
,” in
Proceedings of the IEEE EFTF-IFCS Conference Joint Meeting, 13-17 April 2015, Denver, Colorado
(
IEEE
,
2015
), pp.
71
-
73
.
12.
F. X.
Esnault
,
D.
Holleville
,
N.
Rossetto
,
S.
Guérandel
, and
N.
Dimarcq
,
Phys. Rev. A
82
,
033436
(
2010
).
13.
F. X.
Esnault
,
E.
Blanshan
,
E. N.
Ivanov
,
R. E.
Scholten
,
J.
Kitching
, and
E.
Donley
,
Phys. Rev. A
88
,
042120
(
2013
).
14.
See http://www.t4science.com/products/ for information on performances of passive hydrogen masers (T4Science).
15.
G.
Kramer
, in
Digest of the Conference on Precision Electromagnetic Measurements (CPEM), London, UK
(
IEEE
,
1974
), pp.
157
158
.
16.
C.
Audoin
,
V.
Candelier
, and
N.
Dimarcq
,
IEEE Trans. Instrum. Meas.
40
(
2
),
121
(
1991
).
17.
G. J.
Dick
, in
Proceedings of Precise Time and Time Interval, Redondo Beach, CA
(
US Naval Observatory
,
1987
), pp.
133
147
.
18.
C.
Audoin
,
G.
Santarelli
,
A.
Makdissi
, and
A.
Clairon
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
45
,
887
(
1998
).
19.
See http://www.inrim.it/Mclocks/ for information on the MClocks project.
20.
B.
François
,
C. E.
Calosso
,
J. M.
Danet
, and
R.
Boudot
,
Rev. Sci. Instrum.
85
,
094709
(
2014
).
21.
R.
Boudot
,
S.
Guérandel
, and
E.
de Clercq
,
IEEE Trans. Instrum. Meas.
58
(
10
),
3659
(
2009
).
22.
See http://www.pascall.co.uk/ for information on performances of quartz crystal oscillators and multiplication chains developed by Pascall electronics.
23.
E.
Rubiola
and
V.
Giordano
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
51
,
15
(
2007
).
24.
R. L.
Filler
and
J. R.
Vig
, in
IEEE 34th Annual Symposium on Frequency Control
(
IEEE
,
1980
), p.
187
.
25.
P.
Yun
,
J. M.
Danet
,
D.
Holleville
,
E.
De Clercq
, and
S.
Guérandel
,
Appl. Phys. Lett.
105
,
231106
(
2014
).
26.
E.
Rubiola
and
V.
Giordano
,
Rev. Sci. Instrum.
71
(
8
),
3085
(
2000
).
27.
E.
Rubiola
and
R.
Boudot
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
54
(
5
),
926
-
937
(
2007
).
28.
C. W.
Nelson
,
A.
Hati
, and
D.
Howe
,
Rev. Sci. Instrum.
85
,
024705
(
2014
).
29.
F.
Walls
, in
IEEE 46th Annual Symposium on Frequency Control
(
IEEE
,
1992
), pp.
257
-
261
.
30.
E.
Rubiola
,
Phase Noise and Frequency Stability in Oscillators
(
Cambridge University Press
,
2008
).
31.
E.
Parker
, in
IEEE 41st Annual Symposium on Frequency Control
(
IEEE
,
1987
), pp.
99
-
110
.
32.
C. E.
Calosso
,
Y.
Gruson
, and
E.
Rubiola
, “
Phase noise and amplitude noise in DDS
,” in
Frequency Control Symposium (IEEE FCS)
(
IEEE
,
2012
), pp.
1
-
6
.
You do not currently have access to this content.