A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al+ ion current with a density of 167 μA/cm2 is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 109 cm−3 to 6 × 1010 cm−3 and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

1.
R.
Harkewicz
,
P. J.
Billquist
,
J. P.
Greene
,
J.
J. A. Nolen
, and
R. C.
Pardo
,
Rev. Sci. Instrum.
66
,
2883
(
1995
).
2.
Y.
Kato
and
S.
Ishii
,
Rev. Sci. Instrum.
67
,
2171
(
1996
).
3.
T.
Weichsel
,
U.
Hartung
,
T.
Kopte
,
G.
Zschornack
,
M.
Kreller
, and
A.
Silze
,
Rev. Sci. Instrum.
85
,
053301
(
2014
).
4.
R.
Geller
,
Electron Cyclotron Resonance Ion Sources and ECR Plasmas
(
IOP Press
,
1996
), p.
434
.
5.
T.
Weichsel
,
U.
Hartung
,
T.
Kopte
,
G.
Zschornack
,
M.
Kreller
, and
A.
Silze
,
Proceedings of IPAC2014
,
Dresden, Germany
,
2014
.
6.
See http://creativecommons.org/licenses/by/3.0/legalcode for information about Creative Commons Attribution 3.0 license.
7.
R.
Pintaske
,
T.
Welzel
,
N.
Kahl
,
M.
Schaller
,
J.
Hahn
, and
F.
Richter
,
Surf. Coat. Technol.
90
,
275
(
1997
).
8.
E. O.
Johnson
and
L.
Malter
,
Phys. Rev.
80
,
58
(
1950
).
9.
S.
Klagge
and
M.
Tichy
,
Czech. J. Phys. B
35
,
988
(
1985
).
10.
11.
R.
Huddlestone
and
S.
Leonard
, “
Plasma diagnostic techniques
,” in
Pure and Applied Physics
(
Academic Press
,
1965
).
12.
X.-M.
Zhu
and
Y.-K.
Pu
,
J. Phys. D: Appl. Phys.
43
,
403001
(
2010
).
13.
K.
Behringer
,
Plasma Phys. Controlled Fusion
33
,
997
(
1991
).
14.
G.
Zschornack
,
U.
Birke
,
D.
Hofmann
,
C.
Muehle
,
G.
Musiol
,
H.
Schmidt-Boecking
,
M.
Schneider
,
K. E.
Stiebing
,
H.
Streitz
, and
C.
Zippe
,
Rev. Sci. Instrum.
63
,
3078
(
1992
).
15.
P.
Gruebling
,
J.
Hollandt
, and
G.
Ulm
,
Rev. Sci. Instrum.
73
,
614
(
2002
).
16.
N.
Poluektov
,
V.
Kharchenko
, and
I.
Usatov
,
Plasma Phys. Rep.
27
,
625
(
2001
).
17.
S.
Biri
,
A.
Valek
,
T.
Suta
,
E.
Takacs
,
E.
cs
,
C.
Szabo
,
L. T.
Hudson
,
B.
Radics
,
J.
Imrek
,
B.
Juhasz
, and
J.
Palinkas
,
Rev. Sci. Instrum.
75
,
1420
(
2004
).
18.
O. D.
Cortazar
,
A.
Megia-Macias
,
A.
Vizcaino-de Julian
,
O.
Tarvainen
,
J.
Komppula
, and
H.
Koivisto
,
Rev. Sci. Instrum.
85
,
02A902
(
2014
).
19.
M.
Misina
,
Y.
Setsuhara
, and
S.
Miyake
,
J. Vac. Sci. Technol., A
15
,
1922
(
1997
).
20.
V.
Mironov
,
K. E.
Stiebing
,
O.
Hohn
,
L.
Schmidt
,
H.
Schmidt-Boecking
,
S.
Runkel
,
A.
Schempp
,
G.
Shirkov
,
S.
Biri
, and
L.
Kenez
,
Rev. Sci. Instrum.
73
,
623
(
2002
).
21.
L.
Kenez
,
S.
Biri
,
J.
Karacsony
,
A.
Valek
,
T.
Nakagawa
,
K. E.
Stiebing
, and
V.
Mironov
,
Rev. Sci. Instrum.
73
,
617
(
2002
).
22.
L.
Fontaine
and
P.
Louvet
,
Plasma Sources Sci. Technol.
8
,
125
(
1999
).
23.
A.
Yonesu
,
S.
Watashi
,
M.
Yoshimi
, and
Y.
Yamashiro
,
Vacuum
80
,
671
(
2006
).
24.
G.
Crolly
and
H.
Oechsner
,
EPJ Appl. Phys.
15
,
49
(
2001
).
25.
J. B.
Boffard
,
C. C.
Lin
, and
C. A.
DeJoseph
, Jr.
,
J. Phys. D: Appl. Phys.
37
,
R143
(
2004
).
26.
S. M.
Rossnagel
,
J. Vac. Sci. Technol., A
6
,
1821
(
1988
).
27.
J.
Hopwood
and
F.
Qian
,
J. Appl. Phys.
78
,
758
(
1995
).
28.
S. M.
Rossnagel
and
J.
Hopwood
,
Appl. Phys. Lett.
63
,
3285
(
1993
).
29.
D. B.
Hayden
,
D. R.
Juliano
,
K. M.
Green
,
D. N.
Ruzic
,
C. A.
Weiss
,
K. A.
Ashtiani
, and
T. J.
Licata
,
J. Vac. Sci. Technol., A
16
,
624
(
1998
).
30.
M.
Matsuoka
and
K.
Ono
,
J. Appl. Phys.
65
,
4403
(
1989
).
31.
J. T.
Gudmundsson
,
J. Phys.: Conf. Ser.
100
,
082013
(
2008
).
32.
I. M.
Rusinov
,
I.
Bozhinova
, and
A. B.
Blagoev
,
J. Phys.: Conf. Ser.
63
,
012008
(
2007
).
33.
Y.
Yoshida
,
Rev. Sci. Instrum.
63
,
179
(
1992
).
34.
N. P.
Poluektov
,
V. N.
Kharchenko
, and
I. A.
Kamyschov
,
Plasma Sources Sci. Technol.
12
,
PII S0963
(
2003
).
35.
M.
Dickson
and
J.
Hopwood
,
J. Vac. Sci. Technol., A
15
,
2307
(
1997
).
You do not currently have access to this content.