Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

1.
C. J.
Gómez
and
R.
Garcia
,
Ultramicroscopy
110
,
626
(
2010
).
2.
N. F.
Martínez
and
R.
García
,
Nanotechnology
17
,
S167
(
2006
).
3.
M.
Radmacher
,
R. W.
Tillmann
, and
H. E.
Gaub
,
Biophys. J.
64
,
735
(
1993
).
4.
A.
Rosa-Zeiser
,
E.
Weilandt
,
S.
Hild
, and
O.
Marti
,
Meas. Sci. Technol.
8
,
1333
(
1997
).
5.
M. E.
Dokukin
and
I.
Sokolov
,
Langmuir
28
,
16060
(
2012
).
6.
D.
Platz
,
E. A.
Tholén
,
D.
Pesen
, and
D. B.
Haviland
,
Appl. Phys. Lett.
92
,
153106
(
2008
).
7.
D.
Wang
,
S.
Fujinami
,
K.
Nakajima
, and
T.
Nishi
,
Macromolecules
43
,
3169
(
2010
).
8.
D. C.
Hurley
, “
Contact resonance force microscopy techniques for nanomechanical measurements
,” in
Applied Scanning Probe Methods
(
Springer-Verlag
,
Berlin
,
2009
), Vol.
XI
.
9.
D. C.
Hurley
,
K.
Shen
,
N. M.
Jennett
, and
J. A.
Turner
,
J. Appl. Phys.
94
,
2347
(
2003
).
10.
U.
Rabe
and
W.
Arnold
,
Appl. Phys. Lett.
64
,
1493
(
1994
).
11.
K.
Yamanaka
,
H.
Ogiso
, and
O.
Kolosov
,
Appl. Phys. Lett.
64
,
178
(
1994
).
12.
Y. J.
Li
,
N.
Kobayashi
,
H.
Nomura
,
Y.
Naitoh
,
M.
Kageshima
, and
Y.
Sugawara
,
Jpn. J. Appl. Phys., Part 1
47
,
6121
(
2008
).
13.
A.
Gannepalli
,
D. G.
Yablon
,
A. H.
Tsou
, and
R.
Proksch
,
Nanotechnology
22
,
355705
(
2011
).
14.
J. P.
Killgore
,
D. G.
Yablon
,
A. H.
Tsou
,
A.
Gannepalli
,
P. A.
Yuya
,
J. A.
Turner
,
R.
Proksch
, and
D. C.
Hurley
,
Langmuir
27
,
13983
(
2011
).
15.
P. A.
Yuya
,
D. C.
Hurley
, and
J. A.
Turner
,
J. Appl. Phys.
104
,
74916
(
2008
).
16.
D. G.
Yablon
,
A.
Gannepalli
,
R.
Proksch
,
J.
Killgore
,
D. C.
Hurley
,
J.
Grabowski
, and
A. H.
Tsou
,
Macromolecules
45
,
4363
(
2012
).
17.
T. E.
Schäffer
and
P. K.
Hansma
,
J. Appl. Phys.
84
,
4661
(
1998
).
18.
D.
Kiracofe
and
A.
Raman
,
Nanotechnology
22
,
485502
(
2011
).
19.
J. E.
Sader
,
J. Appl. Phys.
84
,
64
(
1998
).
20.
N.
Ploscariu
and
R.
Szoszkiewicz
,
Appl. Phys. Lett.
103
,
263702
(
2013
).
21.
R. C.
Tung
,
J. P.
Killgore
, and
D. C.
Hurley
,
Rev. Sci. Instrum.
84
,
73703
(
2013
).
22.
Z.
Parlak
,
Q.
Tu
, and
S.
Zauscher
,
Nanotechnology
25
,
445703
(
2014
).
23.
S. E.
Campbell
,
V. L.
Ferguson
, and
D. C.
Hurley
,
Acta Biomater.
8
,
4389
(
2012
).
24.
S.
Hengsberger
,
A.
Kulik
, and
P.
Zysset
,
Bone
30
,
178
(
2002
).
25.
A.
Labuda
,
J.
Cleveland
,
N.
Geisse
,
M.
Kocun
,
B.
Ohler
,
R.
Proksch
,
M.
Viani
, and
D.
Walters
,
Microsc. Anal.
28
,
S21
(
2014
).
26.
D.
Ramos
,
J.
Mertens
,
M.
Calleja
, and
J.
Tamayo
,
Appl. Phys. Lett.
92
,
173108
(
2008
).
27.
D.
Ramos
,
J.
Tamayo
,
J.
Mertens
, and
M.
Calleja
,
J. Appl. Phys.
99
,
124904
(
2006
).
28.
A.
Labuda
,
K.
Kobayashi
,
Y.
Miyahara
, and
P.
Grütter
,
Rev. Sci. Instrum.
83
,
053703
(
2012
).
29.
B. J.
Rodriguez
,
C.
Callahan
,
S. V.
Kalinin
, and
R.
Proksch
,
Nanotechnology
18
,
475504
(
2007
).
30.
R. B.
Proksch
, U. S. patent 20130340126 A1 (19 December 2013).
31.
P. A.
Yuya
,
D. C.
Hurley
, and
J. A.
Turner
,
J. Appl. Phys.
109
,
113528
(
2011
).
32.
A.
Labuda
and
R.
Proksch
,
Appl. Phys. Lett.
106
,
253103
(
2015
).
33.
A.
Labuda
,
K.
Kobayashi
,
D.
Kiracofe
,
K.
Suzuki
,
P. H.
Grütter
, and
H.
Yamada
,
AIP Adv.
1
,
022136
(
2011
).
34.
R.
Proksch
and
S. V.
Kalinin
,
Nanotechnology
21
,
455705
(
2010
).
35.
T. E.
Schäffer
,
J. P.
Cleveland
,
F.
Ohnesorge
,
D. A.
Walters
, and
P. K.
Hansma
,
J. Appl. Phys.
80
,
3622
(
1996
).
36.
37.
Materials Properties Handbook Titanium Alloys
, edited by
R.
Boyer
,
G.
Welsch
, and
E. W.
Collings
(
ASM International Materials Park
,
1994
).
38.
See supplementary material at http://dx.doi.org/10.1063/1.4928105 for Figure S1 showing silicon oxide grid image.
39.
D. G.
Yablon
,
J.
Grabowski
, and
I.
Chakraborty
,
Meas. Sci. Technol.
25
,
055402
(
2014
).
40.
R.
Proksch
, “Practical considerations for loss tangent imaging with amplitude-modulated atomic force microscopy” (unpublished).

Supplementary Material

You do not currently have access to this content.