This paper presents a novel apparatus for extracting volatile species from liquids using a “sniffer-chip.” By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ∼30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1 % of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s−1.

1.
K. P.
Kuhl
,
E. R.
Cave
,
D. N.
Abram
, and
T. F.
Jaramillo
, “
New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
,”
Energy Environ. Sci.
5
(
5
),
7050
(
2012
).
2.
T.
Kotiaho
,
F. R.
Lauritsen
,
T. K.
Choudhury
,
R. G.
Cooks
, and
G. T.
Tsao
, “
Membrane introduction mass spectrometry
,”
Anal. Chem.
63
(
18
),
875A
883A
(
1991
).
3.
R. C.
Johnson
,
R. G.
Cooks
,
T. M.
Allen
,
M. E.
Cisper
, and
P. H.
Hemberger
, “
Membrane introduction mass spectrometry: Trends and applications
,”
Mass Spectrom. Rev.
19
(
1
),
1
37
(
2000
).
4.
S.
Bruckenstein
and
R. R.
Gadde
, “
Use of a porous electrode for in situ mass spectrometric determination of volatile electrode reaction products
,”
J. Am. Chem. Soc.
93
(
3
),
793
(
1971
).
5.
O.
Wolter
and
J.
Heitbaum
, “
Differential electrochemical mass spectroscopy (DEMS)–a new method for the study of electrode processes
,”
Ber. Bunsenges. Phys. Chem.
88
,
2
6
(
1984
).
6.
H.
Baltruschat
, “
Differential electrochemical mass spectrometry
,”
J. Am. Soc. Mass Spectrom.
15
(
12
),
1693
1706
(
2004
).
7.
H.
Wang
,
E.
Rus
, and
H. D.
Abruña
, “
New double-band-electrode channel flow differential electrochemical mass spectrometry cell: Application for detecting product formation during methanol electrooxidation
,”
Anal. Chem.
82
(
11
),
4319
4324
(
2010
).
8.
A. M.
Hynes
,
H.
Ashraf
,
J. K.
Bhardwaj
,
J.
Hopkins
,
I.
Johnston
, and
J. N.
Shepherd
, “
Recent advances in silicon etching for MEMS using the ASE process
,”
Sens. Actuators, A
74
(
1-3
),
13
17
(
1999
).
9.
D. I.
Pomerantz
, “
Anodic bonding
,” U.S. patent 3397278 A (18 May
1965
).
10.
T. R.
Henriksen
,
J. L.
Olsen
,
P. C. K.
Vesborg
,
I.
Chorkendorff
, and
O.
Hansen
, “
Highly sensitive silicon microreactor for catalyst testing
,”
Rev. Sci. Instrum.
80
(
12
),
124101
(
2009
).
11.
D.
Tegtmeyer
,
A.
Heindrichs
, and
J.
Heitbaum
, “
Electrochemical on line mass spectrometry on a rotating electrode inlet system
,”
Ber. Bunsenges. Phys. Chem.
93
,
201
206
(
1989
).
12.
S.
Wasmus
,
E.
Cattaneo
, and
W.
Vielstich
, “
Reduction of carbon dioxide to methane and ethene–an on-line MS study with rotating electrodes
,”
Electrochim. Acta
35
(
4
),
771
775
(
1990
).
13.
M.
Fujihira
and
T.
Noguchi
, “
A novel differential electrochemical mass spectrometer (DEMS) with a stationary gas-permeable electrode in a rotational flow produced by a rotating rod
,”
J. Electroanal. Chem.
347
,
457
463
(
1993
).
14.
T.
Hartung
and
H.
Baltruschat
, “
Differential electrochemical mass spectrometry using smooth electrodes: Adsorption and H/D-exchange reactions of benzene on Pt
,”
Langmuir
6
(
11
),
953
957
(
1990
).
15.
H.
Baltruschat
and
U.
Schmiemann
, “
The adsorption of unsaturated organic species at single crystal electrodes studied by differential electrochemical mass spectrometry
,”
Ber. Bunsenges. Phys. Chem.
97
(
3
),
452
460
(
1993
).
16.
Y.
Gao
,
H.
Tsuji
,
H.
Hattori
, and
H.
Kita
, “
New on-line mass spectrometer system designed for platinum-single crystal electrode and electroreduction of acetylene
,”
J. Electroanal. Chem.
372
,
195
200
(
1994
).
17.
T. H. M.
Housmans
,
A. H.
Wonders
, and
M. T. M.
Koper
, “
Structure sensitivity of methanol electrooxidation pathways on platinum: An on-line electrochemical mass spectrometry study
,”
J. Phys. Chem. B
110
,
10021
10031
(
2006
).
18.
A. H.
Wonders
,
T. H. M.
Housmans
,
V.
Rosca
, and
M. T. M.
Koper
, “
On-line mass spectrometry system for measurements at single-crystal electrodes in hanging meniscus configuration
,”
J. Appl. Electrochem.
36
(
11
),
1215
1221
(
2006
).
19.
Z.
Jusys
, “
A new approach for simultaneous DEMS and EQCM: Electro-oxidation of adsorbed CO on Pt and Pt-Ru
,”
J. Electrochem. Soc.
146
(
3
),
1093
(
1999
).
20.
H.
Wang
,
T.
Löffler
, and
H.
Baltruschat
, “
Formation of intermediates during methanol oxidation: A quantitative DEMS study
,”
J. Appl. Electrochem.
31
,
759
765
(
2001
).
21.
S. P. E.
Smith
,
E.
Casado-Rivera
, and
H. D.
Abruña
, “
Application of differential electrochemical mass spectrometry to the electrocatalytic oxidation of formic acid at a modified Bi/Pt electrode surface
,”
J. Solid State Electrochem.
7
,
582
587
(
2003
).
22.
Abd-El-Aziz A.
Abd-El-Latif
,
J.
Xu
,
N.
Bogolowski
,
P.
Königshoven
, and
H.
Baltruschat
, “
New cell for DEMS applicable to different electrode sizes
,”
Electrocatalysis
3
,
39
47
(
2012
).
23.
J.-P.
Grote
,
A. R.
Zeradjanin
,
S.
Cherevko
, and
K. J. J.
Mayrhofer
, “
Coupling of a scanning flow cell with online electrochemical mass spectrometry for screening of reaction selectivity
,”
Rev. Sci. Instrum.
85
,
104101
(
2014
).
24.
P. C. K.
Vesborg
,
S.-i.
In
,
J. L.
Olsen
,
T. R.
Henriksen
,
B. L.
Abrams
,
Y.
Hou
,
A.
Kleiman-shwarsctein
,
O.
Hansen
, and
I.
Chorkendorff
, “
Quantitative measurements of photocatalytic CO-oxidation as a function of light intensity and wavelength over TiO2 nanotube thin films in microreactors
,”
J. Phys. Chem. C
1
,
11162
11168
(
2010
).
25.
Z.
Jusys
,
J.
Kaiser
, and
R. J.
Behm
, “
Electrooxidation of CO and H2/CO mixtures on a carbon-supported Pt catalyst–a kinetic and mechanistic study by differential electrochemical mass spectrometry
,”
Phys. Chem. Chem. Phys.
3
,
4650
4660
(
2001
).
26.
H.
Wang
,
Z.
Jusys
,
R. J.
Behm
, and
H. D.
Abruna
, “
New insights into the mechanism and kinetics of adsorbed CO electrooxidation on platinum: Online mass spectrometry and kinetic Monte Carlo simulation studies
,”
J. Phys. Chem. C
116
,
11040
11053
(
2012
).
27.
M. J.
Weaver
,
S.-C.
Chang
,
L.-W. H.
Leung
,
X.
Jiang
,
M.
Rubel
,
M.
Szklarczyk
,
D.
Zurawski
, and
A.
Wieckowski
, “
Evaluation of absolute saturation coverages of carbon monoxide on ordered low-index platinum and rhodium electrodes
,”
J. Electroanal. Chem.
327
,
247
260
(
1992
).
28.
T.
Biegler
,
D. A. J.
Rand
, and
R.
Woods
, “
Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption
,”
J. Electroanal. Chem. Interfacial Electrochem.
29
,
269
277
(
1971
).
29.
R. W.
Lindström
,
Y. E.
Seidel
,
Z.
Jusys
,
M.
Gustavsson
,
B.
Wickman
,
B.
Kasemo
, and
R. J.
Behm
, “
Electrocatalysis and transport effects on nanostructured Pt/GC electrodes
,”
J. Electroanal. Chem.
644
(
2
),
90
102
(
2010
).
30.
Y.
Hori
,
K.
Kikuchi
, and
S.
Suzuki
, “
Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution
,”
Chem. Lett.
1985
,
1695
1698
.
31.
K. P.
Kuhl
,
T.
Hatsukade
,
E. R.
Cave
,
D. N.
Abram
,
J.
Kibsgaard
, and
T. F.
Jaramillo
, “
Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces
,”
J. Am. Chem. Soc.
136
,
14107
(
2014
).
32.
C. W.
Li
,
J.
Ciston
, and
M. W.
Kanan
, “
Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
,”
Nature
508
,
504
(
2014
).
33.
K. J. P.
Schouten
,
Y.
Kwon
,
C. J. M.
van der Ham
,
Z.
Qin
, and
M. T. M.
Koper
, “
A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes
,”
Chem. Sci.
2
(
10
),
1902
(
2011
).
34.
K.
Chan
,
C.
Tsai
,
H. A.
Hansen
, and
J. K.
Nørskov
, “
Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction
,”
ChemCatChem
6
,
1899
(
2014
).
You do not currently have access to this content.