3D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3D printing to the design and construction of supersonic nozzles. Nozzles can be created for $0.50 or less, and the ease and low cost can facilitate the optimization of nozzle performance for the needs of any particular experiment. The efficacy of a variety of designs is assessed by examining rotational spectra of OCS (carbonyl sulfide) and Ar–OCS using a Fourier transform microwave spectrometer with tandem cavity and chirped-pulse capabilities. A slit geometry which, to the best of our knowledge has not been used in conjunction with Fourier transform microwave spectrometers, was found to increase the signal-to-noise ratio for the J = 1←0 transition of OCS, by a factor of three to four compared with that obtained using our standard circular nozzle. Corresponding gains for the Ar–OCS complex were marginal, at best, but further optimization of nozzle geometry should be possible. The spectrometer itself is designed to allow rapid switching between cavity and chirped-pulse modes of operation without the need to break vacuum. This feature, as well as the newly incorporated chirped-pulse capability, is described in detail.

1.
R. E.
Smalley
,
L.
Wharton
, and
D. H.
Levy
,
Acc. Chem. Res.
10
,
139
(
1977
).
2.
F.
Luo
,
G. C.
McBane
,
G.
Kim
,
C. F.
Giese
, and
W. R.
Gentry
,
J. Chem. Phys.
98
,
3564
(
1993
).
3.
B.
Brutschy
and
P.
Hobza
,
Chem. Rev.
100
(
11
),
3861
4264
(
2000
)  (thematic issue on “van der Waals molecules III”);
[PubMed]
A.
Castleman
, Jr.
and
P.
Hobza
,
Chem. Rev.
94
(
7
),
1721
2160
(1994) (thematic issue on “van der Waals molecules II”).
4.
J. B.
Anderson
,
Molecular Beams and Low Density Gasdynamics
,
Gasdynamics
Vol.
4
(
M. Dekker
,
New York
,
1974
), p.
1
;
O. F.
Hagena
,
Molecular Beams and Low Density Gasdynamics
,
Gasdynamics
Vol.
4
(
M. Dekker
,
New York
,
1974
), p.
93
;
O. F.
Hagena
and
W.
Obert
,
J. Chem. Phys.
56
,
1793
(
1972
);
J. B.
Anderson
,
R. P.
Andres
, and
J. B.
Fenn
,
Adv. Chem. Phys.
10
,
275
(
1966
).
5.
See, for example,
A. T.
Droege
and
P. C.
Engelking
,
Chem. Phys. Lett.
96
,
316
(
1983
);
Y.
Endo
,
H.
Kohguchi
, and
Y.
Ohshima
,
Faraday Discuss.
97
,
341
(
1994
);
M. C.
McCarthy
,
W.
Chen
,
M. J.
Travers
, and
P.
Thaddeus
,
Astrophys. J., Suppl. Ser.
129
,
611
(
2000
);
J.-U.
Grabow
,
N.
Heineking
, and
W.
Stahl
,
Z. Naturforsch. A
46
,
914
(
1991
);
H.
Harjanto
,
W. W.
Harper
, and
D. J.
Clouthier
,
J. Chem. Phys.
105
,
10189
(
1996
);
S. G.
Kukolich
,
C.
Tanjaroon
,
M. C.
McCarthy
, and
P.
Thaddeus
,
J. Chem. Phys.
119
,
4353
(
2003
).
6.
See, for example,(a)
B. A.
Timp
,
J. L.
Doran
,
S.
Iyer
,
J.-U.
Grabow
, and
K. R.
Leopold
,
J. Mol. Spectrosc.
271
,
20
(
2012
);
(b)
R. D.
Suenram
,
F. J.
Lovas
,
G. T.
Fraser
, and
K.
Matsumura
,
J. Chem. Phys.
92
,
4724
(
1990
);
(c)
Y.
Ohshima
and
Y.
Endo
,
Chem. Phys. Lett.
213
,
95
(
1993
);
(d)
K. A.
Walker
and
M. C. L.
Gerry
,
J. Mol. Spectrosc.
182
,
178
(
1997
);
(e)
A.
Lesarri
,
S.
Mata
,
J. C.
López
, and
J. L.
Alonso
,
Rev. Sci. Instrum.
74
,
4799
(
2003
);
(f)
L.
Bizzocchi
,
B. M.
Giuliano
,
M.
Hess
, and
J.-U.
Grabow
,
J. Chem. Phys.
126
,
114305
(
2007
);
[PubMed]
(g)
I. M.
Konen
,
I. B.
Pollack
,
E. X. J.
Li
,
M. I.
Lester
,
M. E.
Varner
, and
J. F.
Stanton
,
J. Chem. Phys.
122
,
094320
(
2005
).
[PubMed]
7.
See, for example,
M.
Canagaratna
,
J. A.
Phillips
,
H.
Goodfriend
, and
K. R.
Leopold
,
J. Am. Chem. Soc.
118
,
5290
(
1996
);
A. C.
Legon
,
A. L.
Wallwork
, and
C. A.
Rego
,
J. Chem. Phys.
92
,
6397
(
1990
);
J. Z.
Gillies
,
C. W.
Gillies
,
F. J.
Lovas
,
K.
Matsumura
,
R. D.
Suenram
,
E.
Kraka
, and
D.
Cremer
,
J. Am. Chem. Soc.
113
,
6408
(
1991
);
G.
DeBoer
,
P.
Patel
,
A. P.
Prince
, and
M. A.
Young
,
Rev. Sci. Instrum.
72
,
3375
(
2001
);
T.
Emilsson
,
T. D.
Klots
,
R. S.
Ruoff
, and
H. S.
Gutowsky
,
J. Chem. Phys.
93
,
6971
(
1990
).
8.
(a)
C. M.
Lovejoy
,
M. D.
Schuder
, and
D. J.
Nesbitt
,
J. Chem. Phys.
85
,
4890
(
1986
);
(b)
C. M.
Lovejoy
and
D. J.
Nesbitt
,
Rev. Sci. Instrum.
58
,
807
(
1987
);
(c)
C.
Hartz
,
B. A.
Wofford
,
R. F.
Meads
,
R. R.
Lucchese
, and
J. W.
Bevan
,
Rev. Sci. Instrum.
66
,
4375
(
1995
);
(d)
K. L.
Busarow
,
G. A.
Blake
,
K. B.
Laughlin
,
R. C.
Cohen
,
Y. T.
Lee
, and
R. J.
Saykally
,
J. Chem. Phys.
89
,
1268
(
1988
);
(e)
G. A.
Blake
and
R. E.
Bumgarner
,
J. Chem. Phys.
91
,
7300
(
1989
);
(f)
D. W.
Firth
,
M. D.
Dvorak
,
S. W.
Reeve
,
R. S.
Ford
, and
K. R.
Leopold
,
Chem. Phys. Lett.
168
,
161
(
1990
).
9.
G. G.
Brown
,
B. C.
Dian
,
K. O.
Douglass
,
S. M.
Geyer
,
S. T.
Shipman
, and
B. H.
Pate
,
Rev. Sci. Instrum.
79
,
053103
(
2008
).
10.
C.
Pérez
,
S.
Lobsiger
,
N. A.
Seifert
,
D. P.
Zaleski
,
B.
Temelso
,
G. C.
Shields
,
Z.
Kisiel
, and
B. H.
Pate
,
Chem. Phys. Lett.
571
,
1
(
2013
).
11.
C. S.
Brauer
,
G.
Sedo
,
E. M.
Grumstrup
,
K. R.
Leopold
,
M. D.
Marshall
, and
H. O.
Leung
,
Chem. Phys. Lett.
401
,
420
(
2005
).
12.
F. J.
Lovas
and
R. D.
Suenram
,
J. Chem. Phys.
87
,
2010
(
1987
).
13.
J. A.
Shea
,
W. G.
Reed
, and
E. J.
Campbell
,
J. Chem. Phys.
79
,
2559
(
1983
).
14.
T. J.
Balle
and
W. H.
Flygare
,
Rev. Sci. Instrum.
52
,
33
(
1981
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4922852 for a video demonstrating the operation of the retractable push rod and foam holding side-arm for introducing microwave absorber during chirped-pulse experiments.
16.
J. A.
Phillips
,
M.
Canagaratna
,
H.
Goodfriend
,
A.
Grushow
,
J.
Almlöf
, and
K. R.
Leopold
,
J. Am. Chem. Soc.
117
,
12549
(
1995
).

Supplementary Material

You do not currently have access to this content.