As common high-precision inertial sensors, quartz flexure accelerometers have a wide application prospect in low-cost inertial navigation systems. To ameliorate their resolution performance restricted by differential capacitance detection, we proposed a modified type of quartz flexure accelerometer based on an emerging optical technique named laser self-mixing interferometry, which is utilized to sense the displacement of a quartz pendulous reed, and then an equal and opposite force is accordingly produced to maintain the reed motionless relative to the inertial frame. The configuration and working principle of the improved accelerometer have been introduced and analyzed. The preliminary experiments indicate that its bias stability reaches 0.75-0.85 μg, which shows some progress when compared to the traditional type. Further improvements are mainly limited by the characteristics of the laser diode and the multiple reflections from the pendulous reed.

1.
J. L.
Weston
and
D. H.
Titterton
,
Electron. Commun. Eng. J.
12
,
49
(
2000
).
2.
3.
M. S.
Grewal
,
L. R.
Weill
, and
A. P.
Andrews
,
Global Positioning Systems, Inertial Navigation, and Integration
(
John Wiley & Sons
,
2007
).
4.
N. M.
Barbour
, “
Inertial navigation sensors
,”
Tech. Rep.
,
2010
.
5.
E. B.
Cooper
,
E. R.
Post
,
S.
Griffith
,
J.
Levitan
,
S. R.
Manalis
,
M. a.
Schmidt
, and
C. F.
Quate
,
Appl. Phys. Lett.
76
,
3316
(
2000
).
6.
B.
Lenoir
,
A.
Lévy
,
B.
Foulon
,
B.
Lamine
,
B.
Christophe
, and
S.
Reynaud
,
Adv. Space Res.
48
,
1248
(
2011
).
7.
P.
Touboul
,
B.
Foulon
, and
E.
Willemenot
,
Acta Astronaut.
45
,
605
(
1999
).
8.
L.
Li
,
C.
Zhang
,
X.
Zhang
,
W.
Xu
, and
C.
Li
, in
2011 6th IEEE Conf. Ind. Electron. Appl.
(
IEEE
,
2011
), pp.
614
619
.
9.
T.
Bosch
, in
Conf. Optoelectron. Microelectron. Mater. Devices, 2004
(
IEEE
,
2004
), pp.
385
392
.
10.
C.
Zakian
,
M.
Dickinson
, and
T.
King
,
J. Opt. A: Pure Appl. Opt.
7
,
S445
(
2005
).
11.
S. K.
Özdemir
,
S.
Shinohara
,
S.
Ito
,
S.
Takamiya
, and
H.
Yoshida
,
Opt. Eng.
40
,
38
(
2001
).
12.
S. K.
Özdemir
,
S.
Takamiya
,
S.
Ito
,
S.
Shinohara
, and
H.
Yoshida
,
IEEE Trans. Instrum. Meas.
49
,
1029
(
2000
).
13.
I.
Milesi
,
M.
Norgia
,
P. P.
Pompilio
,
C.
Svelto
, and
R. L.
Dellacà
,
IEEE Trans. Instrum. Meas.
60
,
2894
(
2011
).
14.
G.
Giuliani
,
M.
Norgia
,
S.
Donati
, and
T.
Bosch
,
J. Opt. A: Pure Appl. Opt.
4
,
S283
(
2002
).
15.
M.
Liess
,
G.
Weijers
,
C.
Heinks
,
A.
van der Horst
,
A.
Rommers
,
R.
Duijve
, and
G.
Mimnagh
,
Meas. Sci. Technol.
13
,
2001
(
2002
).
16.
K.
Kou
,
X.
Li
,
L.
Li
,
H.
Li
, and
T.
Wu
,
Opt. Laser Technol.
68
,
113
(
2015
).
17.
S.
Donati
,
G.
Giuliani
, and
S.
Merlo
,
IEEE J. Quantum Electron.
31
,
113
(
1995
).
18.
U.
Zabit
,
T.
Bosch
,
S.
Member
, and
F.
Bony
,
IEEE Sens. J.
9
,
1879
(
2009
).
19.
N.
Servagent
,
T.
Bosch
, and
M.
Lescure
,
IEEE J. Sel. Top. Quantum Electron.
6
,
798
(
2000
).
20.
D.
Guo
and
M.
Wang
,
Opt. Commun.
283
,
2186
(
2010
).
21.
M.
Wang
,
K. T. V.
Grattan
,
A. W.
Palmer
, and
W. J. O.
Boyle
,
J. Lightwave Technol.
12
,
1577
(
1994
).
22.
R.
Lang
and
K.
Kobayashi
,
IEEE J. Quantum Electron.
16
,
347
(
1980
).
23.
H.
Xiaohong
,
W.
Zhaohua
, and
H.
Guoqiang
, in
2007 Int. Symp. Intell. Signal Process. Commun. Syst.
(
Ieee
,
2007
), pp.
284
287
.
24.
K.
Kou
,
X.
Li
,
Y.
Yang
,
C.
Wang
, and
L.
Li
,
Optik (Stuttg)
126
,
356
(
2015
).
You do not currently have access to this content.