A traditional pulse generation circuit based on the pulse-forming-line (PFL) is implemented in a commercial 0.13 μm digital CMOS technology. A meandered on-chip coplanar waveguide is used as the PFL, and CMOS transistor is used as switch in the Cadence Spectre simulation. The circuit sample is fabricated and tested. Pulses of ∼170 ps durations and 120-200 mV amplitudes are obtained when the power supply is tuned from 1.2 V to 2 V. The results show that the traditional PFL based circuit can be implemented in standard CMOS technology for on-chip short pulse generation. Furthermore, the PFL circuits significantly extend the short pulse generation capabilities of CMOS technology.

1.
U. F.
Pliquett
and
K. H.
Schoenbach
, “
Changes in electrical impedance of biological matter due to the application of ultrashort high voltage pulses
,”
IEEE Trans. Dielectr. Electr. Insul.
16
,
1273
-
1279
(
2009
).
2.
M.
Behrend
,
A.
Kuthi
,
X.
Gu
,
P. T.
Vernier
,
L.
Marcu
,
C. M.
Craft
, and
M. A.
Gundersen
, “
Pulse generators for pulsed electric field exposure of biological cells and tissues
,”
IEEE Trans. Dielectr. Electr. Insul.
10
(
5
),
820
-
825
(
2003
).
3.
B.
Cadilhon
,
L.
Pecastaing
, and
S.
Vauchamp
, “
Improvement of an ultra-wideband antenna for high-power transient applications
,”
IET Microwaves Antennas Propag.
3
,
1102
-
1109
(
2009
).
4.
C.
Fang
,
C. L.
Law
, and
J.
Hwang
, “
High-voltage high-efficiency ultra-wideband pulse synthesizer
,”
IEEE Microwave Wireless Compon. Lett.
20
,
49
-
51
(
2010
).
5.
P.
Kirawanich
,
S. J.
Yakura
, and
N. E.
Islam
, “
Study of high-power wideband terahertz-pulse generation using integrated high-speed photoconductive semiconductor switches
,”
IEEE Trans. Plasma Sci.
37
(
1
),
219
-
228
(
2009
).
6.
Y.
Zhu
,
J. D.
Zuegel
, and
J. R.
Marciante
, “
A 10 GS/s distributed waveform generator for sub-nanosecond pulse generation and modulation in 0.18 μm standard digital CMOS
,”
IEEE Radio Frequency Integrated Circuits Symposium (RFIC)
(
IEEE
,
2007
), pp.
35
-
38
.
7.
S. J.
Hollis
, “
Pulse generation for on-chip data transmission
,” in
12th Euromicro Conference on Digital System Design/Architectures Methods and Tools
(
IEEE
,
2009
), pp.
303
-
310
.
8.
L.
Smaini
,
C.
Tinella
, and
D.
Helal
, “
Single-chip CMOS pulse generator for UWB systems
,”
IEEE J. Solid-State Circuits
41
(
7
),
1551
-
1561
(
2006
).
9.
J.
Mankowski
and
M.
Kristiansen
, “
A review of short pulse generator technology
,”
IEEE Trans. Plasma Sci.
28
(
1
),
102
-
108
(
2000
).
10.
E.
Schamiloglu
and
M.
Gundersen
, “
Modern pulsed power: Charlie Martin and beyond
,”
Proc. IEEE
92
(
7
),
1014
-
1020
(
2004
).
11.
P.
Wang
,
Y.
Geng
,
H.
Zou
,
H.
Wang
, and
C.
Li
, “
An on-chip power modulator
,”
IEEE PMHV Conference
,
Atlanta, GA, USA
,
2010
.
12.
K.
Kang
,
L.
Nan
,
S. C.
Rustagi
,
K.
Mouthaan
,
J.
Shi
,
R.
Kumar
,
W. Y.
Yin
, and
L. W.
Li
, “
A wideband scalable and SPICE-compatible model for on-chip interconnects up to 110 GHz
,”
IEEE Trans. Microwave Theory Tech.
56
(
4
),
942
-
951
(
2008
).
13.
P.
Selvan
,
S.
Raghavan
, and
S.
Suganthi
, “
A CAD neural model for shielded and conductor backed CPW
,” in
Applied Electromagnetics Conference (AEMC)
,
December 2007
(
IEEE
,
2007
), pp.
1
-
4
.
14.
T. H.
Lee
,
The Design of CMOS Radio-Frequency Integrated Circuits
, 2nd ed. (
Cambridge University Press
,
2004
), p.
261
.
You do not currently have access to this content.