A 4-port S-band waveguide structure was designed and fabricated such that a signal of any amplitude (less than 1 MW) can be switched from a normally closed state, <0.5 dB insertion loss (IL), to an open state >30 dB IL by initiating plasma in a gas cell situated at the junction of this waveguide and one propagating a megawatt level magnetron pulse. The 90/10 switching time is as low as 20 ns with a delay of ∼30 ns between the onset of the high power microwave pulse and the initial drop of the signal. Two ports of this device are for the high power triggering pulse while the other two ports are for the triggered signal in a Moreno-like coupler configuration. In order to maintain high isolation, these two sets of waveguides are rotated 90° from each other with a TE111 resonator/plasma cell located at the intersection. This manuscript describes the design and optimization of this structure using COMSOL 4.4 at the design frequency of 2.85 GHz, comparison of simulated scattering parameters with measured “cold tests” (testing without plasma), and finally the temporal waveforms of this device being used to successfully switch a low power CW signal from 2 W to <5 mW on a sub-microsecond timescale.

1.
K. E.
Mortenson
,
J. M.
Borrego
,
P. E.
Bakeman
, Jr.
, and
R. J.
Gutmann
, “
Microwave silicon windows for high-power Broad0Band switching applications
,”
IEEE J. Solid-State Circuits
4
(
6
),
413
-
421
(
1969
).
2.
E. W.
Jacobs
,
D. W.
Fogliatti
,
H.
Nguyen
,
D. J.
Albares
,
C. T.
Chang
, and
C. K.
Sun
, “
Photo-injection p-i-n diode switch for high power RF switching
,”
IEEE Trans. Microwave Theory Tech.
50
(
2
),
413
-
419
(
2002
).
3.
J.
Givernaud
,
A.
Crunteanu
,
J. C.
Orlianges
,
A.
Pothier
,
C.
Champeaux
,
A.
Catherinot
, and
P.
Blondy
, “
Microwave power limiting devices based on the semiconductor-metal transition in vanadium-dioxide thin films
,”
IEEE Trans. Microwave Theory Tech.
58
(
9
),
2352
-
2361
(
2010
).
4.
M.
Dragoman
,
A.
Cismaru
,
H.
Hartnagel
, and
R.
Plana
, “
Reversible metal-semiconductor transitions for microwave switching applications
,”
Appl. Phys. Lett.
88
,
073506
(
2006
).
5.
A.
Cavalleri
,
Cs.
Toth
,
C. W.
Siders
,
J. A.
Squier
,
F.
Raksi
,
P.
Forget
, and
J. C.
Kieffer
, “
Femtosecond structural dynamics in VO2 during an ultrafast solid-state phase transition
,”
Phys. Rev. Lett.
87
(
23
),
237401
(
2001
).
6.
C. H.
Chen
and
D.
Peroulis
, “
RF design, power handling, and Hot switching of waveguide water-based Absorptive switches
,”
IEEE Trans. Microwave Theory Tech.
57
(
8
),
2038
-
2046
(
2009
).
7.
B.
Chaudhury
and
J. P.
Boeuf
, “
Computational studies of filamentary pattern formation in a high power microwave breakdown generated air plasma
,”
IEEE Trans. Plasma Sci.
38
(
9
),
2281
-
2288
(
2010
).
8.
P.
Felsenthal
, “
Nanosecond-pulse microwave breakdown in air
,”
J. Appl. Phys.
37
(
12
),
4557
-
4560
(
1966
).
9.
C. M.
Ferreira
and
J.
Loureiro
, “
Electron excitation rates and transport parameters in high-frequency N2 discharges
,”
J. Phys. D: Appl. Phys.
22
,
76
-
82
(
1989
).
10.
Y. Y.
Lau
,
J. P.
Verboncoeur
, and
H. C.
Kim
, “
Scaling laws for dielectric window breakdown in vacuum and collisional regimes
,”
Appl. Phys. Lett.
89
,
261501
(
2006
).
11.
G. G.
Lister
,
Y. M.
Li
, and
V. A.
Godyak
, “
Electrical conductivity in highfrequency plasmas
,”
J. Appl. Phys.
79
,
8993
-
8997
(
1996
).
12.
S. R.
Beeson
,
J. C.
Dickens
, and
A. A.
Neuber
, “
Global Model for total delay time distribution of high-power microwave surface flashover
,”
IEEE Trans. Plasma Sci.
42
(
11
),
3450
(
2014
).
13.
G.
Edmiston
,
J.
Krile
,
A.
Neuber
,
J.
Dickens
, and
H.
Krompholz
, “
High power microwave surface flashover of a gas-dielectric interface at 90 to 760 Torr
,”
IEEE Trans. Plasma Sci.
34
(
5
),
1782
-
1788
(
2006
).
14.
J.
Foster
,
S.
Beeson
,
M.
Thomas
,
J.
Krile
,
H.
Krompholz
, and
A.
Neuber
, “
Rapid formation of dielectric surface flashover due to pulsed high power microwave excitation
,”
IEEE Trans. Dielectr. Electr. Insul.
18
(
4
),
964
-
970
(
2011
).
15.
J.
Foster
,
M.
Thomas
, and
A.
Neuber
, “
Variation in the statistical and formative time lags of high power microwave surface flashover utilizing a superimposed dc electric field
,”
J. Appl. Phys.
106
,
063310
(
2009
).
16.
J.
Stephens
,
S.
Beeson
,
J.
Dickens
, and
A.
Neuber
, “
Charged electret deposition for the manipulation of high power microwave flashover delay times
,”
Phys. Plasmas
19
,
112111
(
2012
).
17.
C.
Chang
,
G.
Liu
,
C.
Tang
,
C.
Chen
, and
J.
Fang
, “
Review of recent theories and experiments for improving high-power microwave window breakdown thresholds
,”
Phys. Plasmas
18
,
055702
(
2011
).
18.
R. J.
Barker
and
E.
Schamiloglu
,
High-Power Microwave Sources and Technologies
(
IEEE Press
,
New York, NY, USA
,
2001
), Chap. 10.
19.
H.
Goldie
and
S.
Patel
, “
An rf-Primed All-Halogen Gas plasma microwave high-power receiver protector
,”
IEEE Trans. Microwave Theory Tech.
30
(
12
),
2177
-
2184
(
1982
).
20.
G. J.
Hagelaar
and
L. C.
Pitchford
, “
Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
,”
Plasma Sources Sci. Technol.
14
,
722
-
733
(
2005
).
21.
D. M.
Pozar
,
Microwave Engineering
(
Wiley
,
New York, NY, USA
,
2005
), Chap. 4.
22.
G. F.
Engen
and
C. A.
Hoer
, “
‘Thru-reflect-line’: An improved technique for calibrating the dual six-port automatic network analyzer
,”
IEEE Trans. Microwave Theory Tech.
MTT-27
(
12
),
987
-
993
(
1979
).
23.
J.
Foster
,
G.
Edmiston
,
M.
Thomas
, and
A.
Neuber
, “
High power microwave switching utilizing a waveguide spark Gap
,”
Rev. Sci. Instrum.
79
,
114701
(
2008
).
24.
S.
Beeson
,
J.
Dickens
, and
A.
Neuber
, “
Plasma relaxation mechanics of pulsed high power microwave surface flashover
,”
Phys. Plasmas
20
,
093509
(
2013
).
You do not currently have access to this content.