Viscosity—an integral property of a liquid—is traditionally determined by mechanical instruments. The most pronounced disadvantage of such an approach is the requirement of a large sample volume, which poses a serious obstacle, particularly in biology and biophysics when working with limited samples. Scaling down the required volume by means of microviscometry based on tracking the Brownian motion of particles can provide a reasonable alternative. In this paper, we report a simple microviscometric approach which can be conducted with common laboratory equipment. The core of this approach consists in a freely available standalone script to process particle trajectory data based on a Newtonian model. In our study, this setup allowed the sample to be scaled down to 10 μl. The utility of the approach was demonstrated using model solutions of glycerine, hyaluronate, and mouse blood plasma. Therefore, this microviscometric approach based on a newly developed freely available script can be suggested for determination of the viscosity of small biological samples (e.g., body fluids).

1.
P.
Cicuta
and
M.
Donald
, “
Microrheology: A review of the method and applications
,”
Soft Matter
3
,
1449
1455
(
2007
).
2.
T.
Larsen
,
K.
Schultz
, and
E. M.
Furst
, “
Hydrogel microrheology near the liquid-solid transition
,”
Korea-Australia Rheol. J.
20
,
165
173
(
2008
).
3.
H.
Kang
,
K. H.
Ahn
, and
S. J.
Lee
, “
Rheological properties of dilute polymer solutions determined by particle tracking microrheology and bulk rheometry
,”
Korea-Australia Rheol. J.
22
,
11
19
(
2009
).
4.
W. B.
Mansel
,
S.
Keen
,
P. J.
Patty
,
Y.
Hemar
, and
A. K. A.
Williams
, “
Practical review of microrheological techniques
,”
Rheology-New Concepts, Applications and Methods
, edited by
R.
Durairaj
(
InTech
,
2013
), pp.
1
22
.
5.
See supplementary material at http://dx.doi.org/10.1063/1.4913386 for a description of passive microrheology principles and chamber construction.
6.
T.
Moschakis
, “
Microrheology and particle tracking in food gels and emulsions
,”
Curr. Opin. Colloid Interface Sci.
18
,
311
323
(
2013
).
7.
Q.
Lu
and
M. J.
Solomon
, “
Probe size effects on the microrheology of associating polymer solutions
,”
Phys. Rev. E
66
,
061504
(
2002
).
8.
J.
Suh
, “
Real-time multiple-particle tracking: Applications to drug and gene delivery
,”
Adv. Drug Delivery Rev.
57
,
63
78
(
2005
).
9.
M.
Valentine
,
P.
Kaplan
,
D.
Thota
,
J.
Crocker
,
T.
Gisler
,
M.
Pruda
,
M.
Beck
, and
D.
Weitz
, “
Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking
,”
Phys. Rev. E
64
,
061506
(
2001
).
10.
M. L.
Gardel
,
M. T.
Valentine
, and
D. A.
Weitz
, “
Microrheology
,”
Microscale Diagnostic Techniques
, edited by
K.
Breuer
(
Springer
,
Berlin
,
2005
), pp.
1
50
.
11.
J. C.
Crocker
and
D. G.
Grier
, “
Methods of digital video microscopy for colloidal studies
,”
J. Colloid Interface Sci.
179
,
298
310
(
1996
).
12.
J. C.
Crocker
and
B. D.
Hoffman
, “
Multiple-particle tracking and two-point microrheology in cells
,”
Methods Cell Biol.
83
,
141
178
(
2007
).
13.
V.
Pelletier
,
N.
Gal
,
P.
Fournier
, and
M.
Kilfoil
, “
Microrheology of microtubule solutions and actin-microtubule composite networks
,”
Phys. Rev. Lett.
102
,
188303
(
2009
).
14.
Y.
Gao
and
M.
Kilfoil
, “
Accurate detection and complete tracking of large populations of features in three dimensions
,”
Opt. Express
17
,
4685
4704
(
2009
).
15.
G.
Milne
, “
Optical sorting and manipulation of microscopic particles
,” Ph.D. thesis (
University of St. Andrews Press
, St. Andrews,
2007
).
16.
I. F.
Sbalzarini
and
P.
Koumoutsakos
, “
Feature point tracking and trajectory analysis for video imaging in cell biology
,”
J. Struct. Biol.
151
,
182
195
(
2005
).
17.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to imageJ: 25 years of image analysis
,”
Nat. Methods
9
,
671
675
(
2012
).
18.
N.
Chenouard
,
I.
Bloch
, and
J. C.
Olivo-Martin
, “
Multiple hypothesis tracking for cluttered biological image sequences
,”
IEEE Trans. Pattern Anal. Mach. Intell.
35
,
2736
3750
(
2013
).
19.
F.
De Chaumont
,
S.
Dallongeville
,
N.
Chenouard
,
N.
Hervé
,
S.
Pop
,
T.
Provoost
,
V.
Meas-Yedid
,
P.
Pankajakshan
,
T.
Lecomte
,
Y.
Le Montagner
,
T.
Lagache
,
A.
Dufour
, and
J. C.
Olivio-Martin
, “
Icy: An open bioimage informatics platform for extended reproducible research
,”
Nat. Methods
9
,
690
696
(
2012
).
20.
J. B.
Segur
and
H. E.
Oberstar
, “
Viscosity of glycerol and its aqueous solutions
,”
Industrial
43
,
2117
2120
(
1951
).
21.
D.
Wirtz
, “
Particle-tracking microrheology of living cells: Principles and applications
,”
Annu. Rev. Biophys.
38
,
301
326
(
2009
).
22.
S. A.
Abdelkawis
, “
The rheological properties of vitreoushumor after q-switched Nd:YAG laser photo disruption
,”
Biophys. Rev. Lett.
7
,
29
39
(
2012
).
23.
J. A.
Beswick
and
C.
McCulloch
, “
Effect of hyaluronidase on the viscosity of the aqueous humour
,”
Br. J. Ophthalmol.
40
,
545
548
(
1956
).
24.
U.
Windberger
,
A.
Bartholovitch
,
R.
Plasenzotti
,
K. J.
Korak
, and
G.
Heinze
, “
Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: Reference values and comparison of data
,”
Exp. Physiol.
88
,
431
440
(
2003
).
25.
T. C.
Laurent
and
J. R. E.
Fraser
, “
Hyaluronan
,”
Faseb J.
6
,
2397
2404
(
1992
).

Supplementary Material

You do not currently have access to this content.