Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

1.
J.
Benford
,
J.
Swegle
, and
E.
Schamiloglu
,
High Power Microwaves
, 2nd ed. (
CRC
,
New York
,
2007
).
2.
C. M.
Zhou
,
G. Z.
Liu
, and
Y. G.
Liu
,
High Power Microwave Sources
(
Atomic Energy Press
,
Beijing
,
2007
).
3.
L. M.
Earley
,
W. P.
Ballard
,
L. D.
Roose
, and
C. B.
Wharton
,
Rev. Sci. Instrum.
57
,
2283
(
1986
).
4.
J. K.
Yan
,
X. L.
Liu
,
H.
Ye
,
M.
Yang
,
F.
Yan
,
X. H.
Cui
, and
J.
Zhou
,
High Power Laser Part. Beams
23
,
3149
3153
(
2011
).
5.
J.
Zhu
,
T.
Shu
,
J.
Zhang
,
G. L.
Li
,
Z. H.
Zhang
, and
Y. W.
Fan
,
Phys. Plasmas
18
,
053101
(
2011
).
6.
D.
Zhang
,
J.
Zhang
,
H. H.
Zhong
, and
Z. X.
Jin
,
Phys. Plasmas
19
,
103102
(
2012
).
7.
Q. Z.
Xing
,
J.
Wu
,
S. X.
Zheng
, and
C. X.
Tang
,
IEEE Trans. Plasma Sci.
37
,
298
303
(
2009
).
8.
T.
Inoue
and
K.
Yamamura
,
IEEE Trans. Instrum. Meas.
45
,
146
(
1996
).
9.
X. H.
Cui
and
T. P.
Crowley
,
IEEE Trans. Instrum. Meas.
60
,
2690
(
2011
).
10.
B.
Vowinkel
and
H. P.
Röser
,
Int. J. Infrared Millimeter Waves
3
,
471
487
(
1982
).
11.
N. P.
Abbott
,
C. J.
Reeves
, and
G. R.
Orford
,
IEEE Trans. Instrum. Meas.
23
,
414
420
(
1974
).
12.
N. S.
Chung
,
J.
Shin
,
H.
Bayer
, and
R.
Honigbaum
,
IEEE Trans. Instrum. Meas.
38
,
460
464
(
1989
).
13.
W.
He
and
Y. M.
Chen
, in
Proceedings of International Symposium on Signals, Systems and Electronics
(
2010
).
14.
X. H.
Cui
,
Y.
Li
,
X. X.
Gao
,
Z. F.
Song
, and
W. J.
Sun
, in
IEEE ARFTG Microwave Measurement Conference
(
2013
).
15.
J. W.
Alen
,
F. R.
Clague
,
N. T.
Larsen
, and
M. P.
Weidman
, “
NIST microwave power standards in waveguide
,” NIST technical note 1511 (
1999
).
16.
P.
Efthimion
,
P. R.
Smith
, and
S. P.
Schlesinger
,
Rev. Sci. Instrum.
47
,
1059
(
1976
).
17.
C. B.
Wharton
,
L. M.
Earley
, and
W. P.
Ballard
,
Rev. Sci. Instrum.
57
,
855
(
1986
).
18.
A. G.
Shkvarunets
,
Instrum. Exp. Tech.
39
,
535
(
1996
).
19.
V. A.
Kiselev
,
A. F.
Linnik
,
I. N.
Onishchenko
, and
V. V.
Uskov
,
Instrum. Exp. Tech.
48
,
230
(
2005
).
20.
X. P.
Chen
,
J.
Mankowski
,
L. L.
Hatfield
, and
M.
Kristiansen
, in
IEEE Conference on Pulsed Power
(
IEEE
,
2005
), p.
194
.
21.
A. L.
Lisichkin
,
E. V.
Nesterov
,
V. Yu.
Peterov
, and
V. A.
Stroganov
,
Instrum. Exp. Tech.
50
,
82
(
2007
).
22.
A. I.
Kilmov
,
O. B.
Kovalchuk
,
V. V.
Rostov
, and
A. N.
Sinyakov
,
IEEE Trans. Plasma Sci.
36
,
661
(
2008
).
23.
V. Yu.
Kozhevnikov
,
A. I.
Klimov
, and
A. V.
Kozyrev
, in
IEEE 28th Convention on Electrical and Electronics Engineers in Israel
(
IEEE
,
2014
), p.
1
.
24.
X. X.
Zhu
,
C.
Chang
,
Q. Y.
Zhang
,
T. Z.
Liang
,
Q.
Hou
,
H. J.
Huang
,
Z. Q.
Zhang
,
J. Y.
Fang
,
C. H.
Chen
,
L. G.
Zhang
, and
W. H.
Guo
,
High Power Laser Part. Beams
22
,
605
(
2010
).
You do not currently have access to this content.