A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

1.
I.
Matsuda
,
M.
Ueno
,
T.
Hirahara
,
R.
Hobara
,
H.
Morikowa
,
C.
Liu
, and
S.
Hasegawa
,
Phys. Rev. Lett.
93
,
236801
(
2004
).
2.
C. M.
Polley
,
W. R.
Clarke
,
J. A.
Miwa
,
M. Y.
Simmons
, and
J. W.
Wells
,
Appl. Phys. Lett.
101
,
262105
(
2012
).
3.
C.
Durand
,
P.
Capiod
,
M.
Berthe
,
J. P.
Nys
,
Ch.
Krzeminski
,
D.
Stiévenard
,
Ch.
Delerue
, and
B.
Grandiddier
,
Nano Lett.
14
,
5636
(
2014
).
4.
T.
Trenkler
,
P.
De Wolf
,
W.
Vandervorst
, and
L.
Hellemans
,
J. Vac. Sci. Technol., B
16
,
367
(
1998
).
5.
J.
Baringhaus
,
M.
Ruan
,
F.
Edler
 et al,
Nature
506
,
349
(
2014
).
6.
V.
Cherepanov
,
E.
Zubkov
,
H.
Junker
,
S.
Korte
,
M.
Blab
,
P.
Coenen
, and
B.
Voigtländer
,
Rev. Sci. Instrum.
83
,
033707
(
2012
).
7.
O.
Guise
,
H.
Marbach
,
J. T.
Yates
 et al,
Rev. sci. instrum.
76
,
045107
(
2005
).
8.
A.
Bannani
,
C. A.
Bobisch
, and
R.
Moeller
,
Rev. Sci. Instrum.
79
,
083704
(
2008
).
9.
R.
García
and
R.
Perez
,
Surf. Sci. Rep.
47
,
197
(
2002
).
10.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
(
Oxford University Press
,
New York
,
2008
).
11.
See www.statek.com for data from STATEK Corporation, USA.
12.
K.
Bartzke
,
T.
Antrack
,
K. H.
Schmidt
,
E.
Dammann
, and
Ch.
Schatterny
,
Int. J. optoelectron.
8
,
669
(
1993
).
13.
U.
Grunewald
,
K.
Bartzke
, and
A.
Antrack
,
Thin Solid Films
264
,
169
(
1995
).
14.
T.
An
,
T.
Nishio
,
T.
Eguchi
,
M.
Ono
,
A.
Nomura
,
K.
Akiyama
, and
Y.
Hasegawa
,
Rev. Sci. Instrum.
79
,
033703
(
2008
).
15.
S.
Heike
and
T.
Hashizume
,
Jpn. J. Appl. Phys.
45
,
1996
(
2006
).
16.
I.
Morawski
,
J.
Blicharski
, and
B.
Voigtländer
,
Rev. Sci. Instrum.
82
,
063701
(
2011
).
17.
F. J.
Giessibl
,
Appl. Phys. Lett.
76
,
1470
(
2000
).
18.
S.
Torbrügge
,
O.
Schaff
, and
J.
Rychen
,
J. Vac. Sci. Technol., B
28
,
C4E12
(
2010
).
19.
A.
Olbrich
,
B.
Ebersberger
, and
C.
Boit
,
Appl. Phys. Lett.
73
,
3114
(
1998
).
20.
P. R.
Gray
,
P. J.
Hurst
,
S. H.
Lewis
, and
R. G.
Meyer
,
Analysis and Design of Analog Integrated Circuits
, 4th ed. (
Wiley
,
New York
,
2001
).
21.
Z.
Majzik
,
M.
Setvin
,
A.
Bettac
,
A.
Feltz
,
V.
Chab
, and
P.
Jelinek
,
Beilstein J. Nanotechnol.
3
,
249
(
2012
).
22.
See www.ti.com for Burr-Brown Products, Texas Instruments, USA.
23.
See www.specs.com for SPECS Surface Nano Analysis GmbH.
24.
H. W.
Ott
,
Noise Reduction Techniques in Electronic Systems
(
Wiley
,
New York
,
1976
).
25.
C. D.
Motchenbacher
and
J. A.
Connelly
,
Low-Noise Electronic System Design
(
Wiley-Interscience
,
New York
,
1993
).
26.
R.
Hobara
,
N.
Nagamura
,
S.
Hasegawa
,
I.
Matsuda
,
Y.
Yamamoto
,
Y.
Miyatake
, and
T.
Nagamura
,
Rev. Sci. Instrum.
78
,
053705
(
2007
).
27.
See www.nanosurf.com for Nanosurf AG, Switzerland.
28.
B.
Voigtländer
,
Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy
(
Springer, New York
,
Berlin, Heidelberg
,
2015
).
29.
I.
Morawski
and
B.
Voigtländer
,
Rev. Sci. Instrum.
81
,
033703
(
2010
).
30.
A. J.
Weymouth
,
T.
Wutscher
,
J.
Welker
,
T.
Hofmann
, and
F. J.
Giessibl
,
Phys. Rev. Lett.
106
,
226801
(
2011
).
31.
F. J.
Giessibl
,
Appl. Phys. Lett.
73
,
3956
(
1998
).
32.
Y.
Hasegawa
,
T.
Eguchi
,
T.
An
,
M.
Ono
,
K.
Akiyama
, and
T.
Sakurai
,
Jpn. J. Appl. Phys.
43
,
L303
(
2004
).
33.
G. H.
Simon
,
M.
Heyde
, and
H.-P.
Rust
,
Nanotechnology
18
,
255503
(
2007
).
34.
J.
Lübbe
,
M.
Temmen
,
S.
Rode
,
P.
Rahe
,
A.
Kühnle
, and
M.
Reichling
,
Beilstein J. Nanotechnol.
4
,
32
(
2013
).
35.
K.
Kobayashi
,
H.
Yamada
, and
K.
Matsushige
,
Rev. Sci. Instrum.
80
,
043708
(
2009
).
36.
F. J.
Giessibl
,
F.
Pielmeier
,
T.
Eguchi
,
T.
An
, and
Y.
Hasegawa
,
Phys. Rev. B
84
,
125409
(
2011
).
37.
Joint Committee for Guides in Metrology
, in
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
(
JCGM
,
2008
), Vol.
100
, Chap. 5.
38.
From Hewlett Packard, model HP35670A.
39.
H. L.
Wade
,
Basic and Advanced Regulatory Control: System Design and Application
, 2nd ed. (
ISA
,
Research Triangle Park
,
2004
).
40.
F. J.
Giessibl
,
Phys. Rev. B
56
,
16010
(
1997
).
41.
U.
Dürig
,
Appl. Phys. Lett.
75
,
433
(
1999
).
42.
R.
Möller
,
A.
Esslinger
, and
B.
Koslowski
,
Appl. Phys. Lett.
55
,
2360
(
1989
).
43.
G.
Vasilescu
,
Electronic Noise and Interfering Signals
(
Springer-Verlag
,
Berlin, Heidelberg
,
2005
).
44.
Sh.
Kogan
,
Electronic Noise and Fluctuations in Solids
(
Cambridge University Press
,
1996
).
You do not currently have access to this content.