In this paper, we present the HELIOS (High Energy Laser Induced Overtone Source) laboratory, an in-house high-order harmonic generation facility which generates extreme ultraviolet (XUV) photon pulses in the range of 15-70 eV with monochromatized XUV pulse lengths below 35 fs. HELIOS is a source for time-resolved pump-probe/two-color spectroscopy in the sub-50 fs range, which can be operated at 5 kHz or 10 kHz. An optical parametric amplifier is available for pump-probe experiments with wavelengths ranging from 240 nm to 20 000 nm. The produced XUV radiation is monochromatized by a grating in the so-called off-plane mount. Together with overall design parameters, first monochromatized spectra are shown with an intensity of 2 ⋅ 1010 photons/s (at 5 kHz) in the 29th harmonic, after the monochromator. The XUV pulse duration is measured to be <25 fs after monochromatization.

1.
H.
Siegbahn
and
L.
Karlsson
,
Photoelectron Spectroscopy
(
Springer-Verlag
,
1982
).
2.
C. S.
Fadley
, “
X-ray photoelectron spectroscopy: Progress and perspectives
,”
J. Electron Spectrosc. Relat. Phenom.
178-179
,
2
32
(
2010
).
3.
S.
Khan
,
K.
Holldack
,
T.
Kachel
,
R.
Mitzner
, and
T.
Quast
, “
Femtosecond undulator radiation from sliced electron bunches
,”
Phys. Rev. Lett.
97
,
074801
(
2006
).
4.
P.
Emma
 et al., “
First lasing and operation of an Ångstrom-wavelength free-electron laser
,”
Nat. Photonics
4
,
641
647
(
2010
).
5.
M.
Bauer
, “
Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes
,”
J. Phys. D: Appl. Phys.
38
,
R253
R267
(
2005
).
6.
S.
Mathias
 et al., “
Angle-resolved photoemission spectroscopy with a femtosecond high harmonic light source using a two-dimensional imaging electron analyzer
,”
Rev. Sci. Instrum.
78
,
083105
(
2007
).
7.
K. R.
Siefermann
 et al., “
Binding energies, lifetimes and implications of bulk and interface solvated electrons in water
,”
Nat. Chem.
2
,
274
279
(
2010
).
8.
O.
Link
 et al., “
Ultrafast electronic spectroscopy for chemical analysis near liquid water interfaces: Concepts and applications
,”
Appl. Phys. A
96
,
117
135
(
2009
).
9.
W.
Li
 et al., “
Time-resolved dynamics in N2O4 probed using high harmonic generation
,”
Science
322
,
1207
1211
(
2008
).
10.
M.
Lewenstein
,
P.
Balcou
,
M. Y.
Ivanov
,
A.
L’Huillier
, and
P. B.
Corkum
, “
Theory of high-harmonic generation by low-frequency laser fields
,”
Phys. Rev. A
49
,
2117
2132
(
1994
).
11.
P.
Corkum
, “
Plasma perspective on strong-field multiphoton ionization
,”
Phys. Rev. Lett.
71
,
1994
1997
(
1993
).
12.
I.
Gierz
 et al., “
Snapshots of non-equilibrium Dirac carrier distributions in graphene
,”
Nat. Mater.
12
,
1119
1124
(
2013
).
13.
T.
Rohwer
 et al., “
Collapse of long-range charge order tracked by time-resolved photoemission at high momenta
,”
Nature
471
,
490
493
(
2011
).
14.
J. C.
Johannsen
 et al., “
Direct view of hot carrier dynamics in graphene
,”
Phys. Rev. Lett.
111
,
027403
(
2013
).
15.
S.
Ulstrup
 et al., “
Ultrafast dynamics of massive Dirac Fermions in bilayer graphene
,”
Phys. Rev. Lett.
112
,
257401
(
2014
).
16.
H. J.
Wörner
 et al., “
Following a chemical reaction using high-harmonic interferometry
,”
Nature
466
,
604
607
(
2010
).
17.
H. J.
Wörner
 et al., “
Conical intersection dynamics in NO2 probed by homodyne high-harmonic spectroscopy
,”
Science
334
,
208
213
(
2011
).
18.
S.
Mathias
 et al., “
Probing the timescale of the exchange interaction in a ferromagnetic alloy
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
4792
4797
(
2012
).
19.
D.
Rudolf
 et al., “
Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current
,”
Nat. Commun.
3
,
1037
(
2012
).
20.
S.
Jana
and
J. A.
Terschlüsen
, “
A Setup for Measuring Element Specific Magnetization Dynamics Employing the Transverse Magneto-Optic Kerr Effect
” (unpublished).
21.
A.
L’Huillier
,
P.
Balcou
,
S.
Candel
,
K. J.
Schafer
, and
K. C.
Kulander
, “
Calculations of high-order harmonic-generation processes in xenon at 1064 nm
,”
Phys. Rev. A
46
,
2778
2790
(
1992
).
22.
A.
L’Huillier
,
K. J.
Schafer
, and
K. C.
Kulander
, “
Higher-order harmonic generation in xenon at 1064 nm: The role of phase matching
,”
Phys. Rev. Lett.
66
,
2200
2203
(
1991
).
23.
J.
Krause
,
K. J.
Schafer
, and
K. C.
Kulander
, “
Calculation of photoemission from atoms subject to intense laser fields
,”
Phys. Rev. A
45
,
4998
5010
(
1992
).
24.
P.
Salières
,
A.
L’Huillier
, and
M.
Lewenstein
, “
Coherence control of high-order harmonics
,”
Phys. Rev. Lett.
74
,
3776
3779
(
1995
).
25.
X.
He
 et al., “
Spatial and spectral properties of the high-order harmonic emission in argon for seeding applications
,”
Phys. Rev. A: At., Mol., Opt. Phys.
79
,
063829
(
2009
).
26.
F.
Frassetto
 et al., “
Single-grating monochromator for extreme-ultraviolet ultrashort pulses
,”
Opt. Express
19
,
19169
19181
(
2011
).
27.
F.
Frassetto
and
L.
Poletto
, “
Grating monochromators for the spectral selection of femtosecond extreme-ultraviolet pulses
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
635
,
S75
S79
(
2011
).
28.
F.
Frassetto
 et al., “
Design and characterization of the XUV monochromator for ultrashort pulses at the ARTEMIS facility
,”
Proc. SPIE
7077
,
707713-1
707713-10
(
2008
).
29.
I. C. E.
Turcu
 et al., “
Ultrafast science and development at the Artemis facility
,”
Proc. SPIE
7469
,
746902-1
746902–15
(
2009
).
30.
C.
Grazioli
 et al., “
CITIUS: An infrared-extreme ultraviolet light source for fundamental and applied ultrafast science
,”
Rev. Sci. Instrum.
85
,
023104
(
2014
).
31.
F.
Frassetto
,
L.
Poletto
,
J. I.
Larruquert
, and
J. A.
Mendez
, “
Efficiency measurements on gratings in the off-plane mount for a high-resolution grazing-incidence XUV monochromator
,”
Proc. SPIE
7077
,
707712
(
2008
).
32.
A.
Johansson
 et al., “
Two-color pump-probe experiments in helium using high-order harmonics
,”
Eur. Phys. J. D
22
,
3
11
(
2003
).
33.
D.
Strasser
 et al., “
Coherent interaction of femtosecond extreme-uv light with He atoms
,”
Phys. Rev. A: At., Mol., Opt. Phys.
73
,
23
26
(
2006
).
34.
M.
Horn-von Hoegen
, “
Growth of semiconductor layers studied by spot profile analysing low energy electron diffraction
,”
Z. Kristallogr. - Cryst. Mater.
214
,
684
721
(
1999
).
35.
H.
Bergersen
 et al., “
A photoelectron spectroscopic study of aqueous tetrabutylammonium iodide
,”
J. Phys.: Condens. Matter
19
,
326101
(
2007
).
36.
G.
Öhrwall
 et al., “
A new energy and angle resolving electron spectrometer—First results
,”
J. Electron Spectrosc. Relat. Phenom.
183
,
125
131
(
2011
).
37.
M.
Agåker
 et al., “
Novel instruments for ultra-soft X-ray emission spectroscopy
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
601
,
213
219
(
2009
).
38.
J. A.
Terschlüsen
 et al., “
Measuring the temporal coherence of a high harmonic generation setup employing a Fourier transform spectrometer for the VUV/XUV
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
768
,
84
88
(
2014
).
39.
T.
Glover
,
R.
Schoenlein
,
A.
Chin
, and
C.
Shank
, “
Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation
,”
Phys. Rev. Lett.
76
,
2468
2471
(
1996
).
40.
P.
Baltzer
,
L.
Karlsson
,
M.
Lundqvist
, and
B.
Wannberg
, “
Resolution and signal-to-background enhancement in gas-phase electron spectroscopy
,”
Rev. Sci. Instrum.
64
,
2179
2189
(
1993
).
41.
J.
Peet
 et al., “
Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols
,”
Nat. Mater.
6
,
497
500
(
2007
).
42.
D.
Mühlbacher
 et al., “
High photovoltaic performance of a low-bandgap polymer
,”
Adv. Mater.
18
,
2884
2889
(
2006
).
43.
T.
Leitner
 et al., “
Combination of an angular-resolved time-of-flight spectrometer with a High Harmonics Generation Source
” (unpublished).
44.
U. B.
Cappel
 et al., “
Direct measurement of excited electrons in a conducting polymer using XUV based time-resolved photoelectron spectroscopy
,”
Nat. Commun.
(submitted).
You do not currently have access to this content.