The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive 85Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive 83mKr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of 83mKr/Xe = 1.9 ⋅ 10−15, demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T.

1.
G.
Bertone
,
D.
Hooper
, and
J.
Silk
,
Phys. Rep.
405
(
5-6
),
276
(
2005
).
2.
J. L.
Feng
,
Annu. Rev. Astron. Astrophys.
48
,
495
(
2010
).
3.
E.
Aprile
 et al. (
XENON Collaboration
),
Phys. Rev. Lett.
109
,
181301
(
2012
).
4.
E.
Aprile
 et al. (
XENON Collaboration
),
Phys. Rev. Lett.
111
,
021301
(
2013
).
5.
E.
Aprile
 et al. (
XENON Collaboration
),
Phys. Rev. D
90
,
062009
(
2014
).
6.
D. S.
Akerib
 et al. (
LUX Collaboration
),
Phys. Rev. Lett.
112
,
091303
(
2014
).
7.
D.
Akimov
 et al.,
Phys. Lett. B
709
,
14
(
2012
).
8.
M.
Xiao
 et al.,
Sci. China: Phys., Mech. Astron.
57
(
11
),
2024
(
2014
).
9.
E.
Aprile
 et al. (
XENON Collaboration
),
Phys. Rev. D
83
,
082001
(
2011
).
10.
S.
Lindemann
and
H.
Simgen
,
Eur. Phys. J. C
74
,
2746
(
2014
).
11.
K.
Abe
 et al. (
XMASS Collaboration
),
Astropart. Phys.
31
(
4
),
290
(
2009
).
12.
E.
Aprile
 et al. (
XENON Collaboration
), XENON1T at LNGS Technical Design Report, 2010, http://www.bo.infn.it/xenon/docs/tdr2010.eps.
13.
S.
Rosendahl
 et al.,
J. Phys.: Conf. Ser.
564
,
012006
(
2014
).
14.
W.
McCabe
,
J.
Smith
, and
P.
Harriott
,
Unit Operations of Chemical Engineering
, 7th ed. (
McGraw-Hill International Edition
,
2005
), p.
665
.
15.
L.
Lohrenegel
,
Einführung in die thermischen Trennverfahren
(
Oldenbourg Verlag München Wien
,
2007
), p.
47
.
16.
S.
Rosendahl
 et al.,
J. Instrum.
9
,
P10010
(
2014
).
17.
A.
Dobi
 et al.,
Nucl. Instrum. Methods Phys. Res., Sect. A
665
,
1
6
(
2011
).
18.
E.
Brown
 et al.,
J. Instrum.
8
,
P02011
(
2013
).
19.
E.
Aprile
,
T.
Yoon
,
A.
Loose
,
L. W.
Goetzke
, and
T.
Zelevinsky
,
Rev. Sci. Instrum.
84
,
093105
(
2013
).
20.
M.
Zboril
 et al.,
J. Instrum.
8
,
P03009
(
2013
).
21.
D.
Vénos
,
A.
Spalek
,
O.
Lebeda
, and
M.
Fiser
,
Appl. Radiat. Isot.
63
(
3
),
323
(
2005
).
22.
D.
Vénos
 et al.,
J. Instrum.
9
,
P12010
(
2014
).
23.
S.
Rosendahl
 et al., “
Investigation of the separation performance of a cryogenic distillation column to separate krypton and xenon using a 83mKr tracer method
” (unpublished).
24.
The National Institute of Standards and Technology (NIST), “Thermophysical Properties of Fluid Systems” (2014), http://webbook.nist.gov/chemistry/fluid/.
25.
See https://root.cern.ch/drupal/ for ROOT Data Analysis Framework.
You do not currently have access to this content.