Time-Correlated Single Photon Counting (TCSPC) has been long recognized as the most sensitive method for fluorescence lifetime measurements, but often requiring “long” data acquisition times. This drawback is related to the limited counting capability of the TCSPC technique, due to pile-up and counting loss effects. In recent years, multi-module TCSPC systems have been introduced to overcome this issue. Splitting the light into several detectors connected to independent TCSPC modules proportionally increases the counting capability. Of course, multi-module operation also increases the system cost and can cause space and power supply problems. In this paper, we propose an alternative approach based on a new detector and processing electronics designed to reduce the overall system dead time, thus enabling efficient photon collection at high excitation rate. We present a fast active quenching circuit for single-photon avalanche diodes which features a minimum dead time of 12.4 ns. We also introduce a new Time-to-Amplitude Converter (TAC) able to attain extra-short dead time thanks to the combination of a scalable array of monolithically integrated TACs and a sequential router. The fast TAC (F-TAC) makes it possible to operate the system towards the upper limit of detector count rate capability (∼80 Mcps) with reduced pile-up losses, addressing one of the historic criticisms of TCSPC. Preliminary measurements on the F-TAC are presented and discussed.

1.
W.
Becker
,
Advanced Time-Correlated Single Photon Counting Techniques
(
Springer
,
Berlin
,
2005
).
2.
H.
Studier
,
K.
Weisshart
,
O.
Holub
, and
W.
Becker
,
Proc. SPIE
8948
,
89481K
(
2014
).
3.
W.
Becker
,
A.
Bergmann
,
G.
Biscotti
,
K.
Koenig
,
I.
Riemann
,
L.
Kelbauskas
, and
C.
Biskup
,
Proc. SPIE
5323
,
27
(
2004
).
4.
W.
Becker
,
A.
Bergmann
,
H.
Wabnitz
,
D.
Grosenick
, and
A.
Liebert
,
Proc. SPIE
4431
,
249
(
2001
).
5.
A.
Hopt
and
E.
Neher
,
Biophys. J.
80
,
2029
(
2001
).
6.
K.
König
, “
Cellular response to laser radiation in fluorescence microscopes
,” in
Methods in Cellular Imaging
, edited by
A.
Periasamy
(
Springer
,
New York
,
2001
).
7.
P. S.
Dittrich
and
P.
Schwille
,
Appl. Phys. B
73
,
829
(
2001
).
8.
G. H.
Patterson
and
D. W.
Piston
,
Biophys. J.
78
,
2159
(
2000
).
9.
S.
Poland
,
N.
Krstajić
,
J.
Monypenny
,
S.
Coelho
,
D.
Tyndall
,
R.
Walker
,
V.
Devauges
,
J.
Richardson
,
N.
Dutton
,
P.
Barber
,
D.
Li
,
K.
Suhling
,
T.
Ng
,
R.
Henderson
, and
S.
Ameer-Beg
,
Biomed. Opt. Express
6
,
277
(
2015
).
10.
D.
Tyndall
,
R.
Walker
,
K.
Nguyen
,
R.
Galland
,
J.
Gao
,
I.
Wang
,
M.
Kloster
,
A.
Delon
, and
R.
Henderson
,
Proc. SPIE
8086
,
80860S
(
2011
).
11.
S.
Kumar
,
C.
Dunsby
,
P. A. A.
De Beule
,
D. M.
Owen
,
U.
Anand
,
P. M. P.
Lanigan
,
R. K. P.
Benninger
,
D. M.
Davis
,
M. A. A.
Neil
,
P.
Anand
,
C.
Benham
,
A.
Naylor
, and
P. M. W.
French
,
Opt. Express
15
,
12548
(
2007
).
12.
A. H.
Buist
,
M.
Muller
,
J.
Squier
, and
G. J.
Brakenhoff
,
J. Microsc.
192
,
217
(
1998
).
13.
J.
Bewersdorf
,
R.
Pick
, and
S.
Hell
,
Opt. Lett.
23
,
655
(
1998
).
14.
T.
Nielsen
,
M.
Frick
,
D.
Hellweg
, and
P.
Andresen
,
J. Microsc.
201
,
368
(
2001
).
15.
S.
Cova
,
M.
Ghioni
,
A.
Lacaita
,
C.
Samori
, and
F.
Zappa
,
Appl. Opt.
35
,
1956
(
1996
).
16.
M.
Ghioni
,
A.
Gulinatti
,
I.
Rech
,
F.
Zappa
, and
S.
Cova
,
IEEE J. Sel. Top. Quantum Electron.
13
,
852
(
2007
).
17.
A.
Gallivanoni
,
I.
Rech
,
D.
Resnati
,
M.
Ghioni
, and
S.
Cova
,
Opt. Express
14
,
5021
(
2006
).
18.
A.
Gallivanoni
,
I.
Rech
, and
M.
Ghioni
,
IEEE Trans. Nucl. Sci.
57
,
3815
(
2010
).
19.
A.
Eisele
,
R.
Henderson
,
B.
Schmidtke
,
T.
Funk
,
L.
Grant
,
J.
Richardson
, and
W.
Freude
, in
International Image Sensor Workshop (IISW)
,
Onuma, Hokkaido
,
8-11 June 2011
, pp.
278
280
, available online at http://www.imagesensors.org/Past%20Workshops/2011%20Workshop/2011%20Papers/R43_Eisele_SPAD139dB.pdf.
20.
I.
Vornicu
,
R.
Carmona-Galán
,
B.
Pérez-Verdú
, and
Á.
Rodríguez-Vázquez
,
Int. J. Circuit Theory Appl.
(
2015
), published online in Wiley Online Library.
21.
C.
Niclass
and
M.
Soga
, in
IEEE International Electron Devices Meeting (IEDM)
,
San Francisco, CA
,
6-8 December 2010
(
Institute of Electrical and Electronics Engineers, Piscataway, NJ
,
2010
), pp.
14.3.1
14.3.4
.
22.
S.
Cova
,
A.
Lacaita
, and
G.
Ripamonti
,
IEEE Electron Device Lett.
12
,
685
(
1991
).
23.
M.
Ghioni
,
A.
Gulinatti
,
P.
Maccagnani
,
I.
Rech
, and
S.
Cova
,
Proc. SPIE
6372
,
63720R
(
2006
).
24.
D.
Tyndall
,
B. R.
Rae
,
D. D.
Li
,
J.
Arlt
,
A.
Johnston
,
J. A.
Richardson
, and
R. K.
Henderson
,
IEEE Trans. Biomed. Circuits Syst.
6
,
562
(
2012
).
25.
M.
Crotti
,
I.
Rech
, and
M.
Ghioni
,
IEEE J. Solid-State Circuits
47
,
699
(
2012
).
26.
S.
Antonioli
,
L.
Miari
,
A.
Cuccato
,
M.
Crotti
,
I.
Rech
, and
M.
Ghioni
,
Rev. Sci. Instrum.
84
,
064705
(
2013
).
27.
W.
Becker
,
Advanced Time-Correlated Single Photon Counting Applications
(
Springer
,
Berlin
,
2015
).
You do not currently have access to this content.