We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

1.
M.
Zorzano
and
C.
Cordobajabonero
, “
Influence of aerosol multiple scattering of ultraviolet radiation on Martian atmospheric sensing
,”
Icarus
190
(
2
),
492
503
(
2007
).
2.
J. P.
Merrison
,
P.
Bertelsen
,
C.
Frandsen
,
H. P.
Gunnlaugsson
,
J. M.
Knudsen
 et al., “
Simulation of the Martian dust aerosol at low wind speeds
,”
J. Geophys. Res.
107
,
16
, doi:10.1029/2001je001807 (
2002
).
3.
S. L.
Hess
,
R. M.
Henry
,
C. B.
Leovy
,
J. A.
Ryan
, and
J. E.
Tillman
, “
Meteorological results from the surface of Mars: Viking 1 and 2
,”
J. Geophys. Res.
82
(
28
),
16
, doi:10.1029/JS082i028p04559 (
1977
).
4.
J. F.
Bell
 et al., “
Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder
,”
J. Geophys. Res.
105
(
E1
),
1721
, doi:10.1029/1999JE001060 (
2000
).
5.
J.
Gómez-Elvira
 et al., “
REMS: The environmental sensor suite for the Mars Science Laboratory Rover
,”
Space Sci. Rev.
170
(
1-4
),
583
640
(
2012
).
6.
T.
Ringrose
,
T.
Martin
, and
J.
Zarnecki
, “
Convective vortices on Mars: A reanalysis of Viking Lander 2 meteorological data, sols 1-50
,” in
33rd Lunar and Planetary Science Conference
(
Lunar and Planetary Institute, The Open University
,
Houston, Texas
,
2002
), p.
2
.
7.
J. M.
Sobrado
,
J.
Martín-Soler
, and
J. A.
Martín-Gago
, “
Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration
,”
Rev. Sci. Instrum.
85
(
3
),
035111
(
2014
).
8.
J. P.
Grotzinger
 et al., “
Mars Science Laboratory Mission and Science Investigation
,”
Space Sci. Rev.
170
(
1-4
),
5
56
(
2012
).
9.
C. F.
Wilson
,
A. L.
Camilletti
,
S. B.
Calcutt
, and
P. M.
Ligrani
, “
A wind tunnel for the calibration of Mars wind sensors
,”
Planet. Space Sci.
56
(
11
),
1532
1541
(
2008
).
10.
R.
Greeley
 et al., “
Windblown dust on Mars: Laboratory simulations of flux as a function of surface roughness
,”
Planet. Space Sci.
48
(
12
),
1349
1355
(
2000
).
11.
J.
Rodriguez-Manfredi
 et al., “
MEDA: An environmental and meteorological package for Mars 2020
,” in
Lunar and Planetary Institute Science Conference Abstracts
,
2014
.
12.
Photodiodes-Communications,Bio-Sensings, Measurements and High-Energy Physics
, edited by
J.-W.
Shi
(
InTech
,
2011
), p.
284
.
13.
M.-P.
Zorzano
,
J.
Martin-Soler
, and
J.
Gómez-Elvira
, “
UV photodiodes response to non-normal, non-collimated and diffusive sources of irradiance
,” in
Photodiodes
(
InTech
,
2011
), p.
284
.
14.
M. B.
Madsen
 et al., “
Overview of the magnetic properties experiments on the Mars Exploration Rovers
,”
J. Geophys. Res.: Planets
114
(
E6
),
1991
2012
, doi:10.1029/2008je003098 (
2009
).
15.
M. B.
Madsen
 et al., “
The magnetic properties experiments on Mars Pathfinder
,”
J. Geophys. Res.
104
(
E4
),
8761
, doi:10.1029/1998Jé00006 (
1999
).
16.
M. J.
Wolff
 et al., “
Ultraviolet dust aerosol properties as observed by MARCI
,”
Icarus
208
(
1
),
143
155
(
2010
).
17.
G. A.
Landis
and
P. P.
Jenkins
, “
Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder
,”
J. Geophys. Res.
105
(
E1
),
1855
, doi:10.1029/1999JE001029 (
2000
).
18.
P.
Nørnberg
 et al., “
Salten Skov I: A Martian magnetic dust analogue
,”
Planet. Space Sci.
57
(
5-6
),
628
631
(
2009
).
19.
D.
Briggs
and
J. T.
Grant
,
Surface Analysis by Auger and X-ray Photoelectron Spectroscopy
(
The Cromwell Press
,
2003
).
20.
C.
Wagner
 et al., “
Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis
,”
Surf. Interface Anal.
3
(
5
),
211
225
(
1981
).
21.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin Elmer Corporation
,
1992
).
22.
T. H.
Solomon
and
J. P.
Gollub
, “
Chaotic particle transport in time-dependent Rayleigh-Bénard convection
,”
Phys. Rev. A
38
(
12
),
6280
6286
(
1988
).
23.
C. R.
Stoker
and
M. A.
Bullock
, “
Organic degradation under simulated Martian conditions
,”
J. Geophys. Res.
102
,
10881
, doi:10.1029/97je00667 (
1997
).
24.
D. A.
Wallace
and
S. A.
Wallace
, “
A new generation of mini high sensitivity QCMs for space applications
,”
Proc. SPIE
2864
,
56
(
1996
).
25.
D.
McKeown
, “
Quartz crystal instrumentation for space research
,”
Proc. SPIE
3427
,
113
(
1998
).
You do not currently have access to this content.