The accurate measurement of dynamic characteristics in weak magnetic sensors is urgently required as a greater number of applications for these devices are found. In this paper, a novel weak pulsed magnetic field system is presented. The underlying principle is to drive a permanent magnet passing another magnet rapidly, producing a pulsed weak magnetic field. The magnitude of the field can be adjusted by changing the velocity and distance between the two magnets. The standard value of the pulsed dynamic magnetic field can be traced back to the accurate measurement of time, displacement, and static magnetic field. In this study a detailed procedure for producing a pulse magnetic field system using the above method is outlined after which a theoretical analysis of the permanent magnet movement is discussed. Using the described apparatus a milli-second level pulse-width with a milli-Tesla magnetic field magnitude is used to study the dynamic characteristics of a giant magnetoresistance sensor. We conclude by suggesting possible improvements to the described apparatus.

1.
F.
Herlach
,
C. C.
Agosta
,
R.
Bogaerts
,
W.
Boon
,
I.
Deckers
,
A.
De Keyser
,
N.
Harrison
,
A.
Lagutin
,
L.
Li
,
L.
Trappeniers
,
J.
Vanacken
,
L.
Van Bockstal
, and
A.
Van Esch
,
Physica B
216
,
161
(
1996
).
2.
M. R.
Freeman
,
M. J.
Brady
, and
J.
Smyth
,
Appl. Phys. Lett.
60
,
2555
(
1992
).
3.
T.
Enling
,
Z.
Qingming
,
H.
Yuanhang
, and
Z.
Jian
,
Plasma Sci. Technol.
10
,
735
(
2008
).
4.
M.
Kanda
,
IEEE Trans. Antennas Propag.
41
,
1349
(
1993
).
5.
M.
Pannetier-Lecoeur
,
H.
Polovy
,
N.
Sergeeva-Chollet
,
G.
Cannies
,
C.
Fermon
, and
L.
Parkkonen
,
J. Phys.: Conf. Ser.
303
,
1
(
2011
).
6.
P.
Campiglio
,
L.
Caruso
,
E.
Paul
,
A.
Demonti
,
L.
Azizi-Rogeau
,
L.
Parkkonen
,
C.
Fermon
, and
M.
Pannetier-Lecoeur
,
IEEE Trans. Magn.
48
,
3501
(
2012
).
7.
T.
Stankevic
,
L.
Medisauskas
,
V.
Stankevic
,
S.
Balevicius
,
N.
Zurauskiene
, and
M.
Schneider
,
Rev. Sci. Instrum.
85
,
044704
(
2014
).
8.
L.
Weckhuysen
,
J.
Vanacken
,
L.
Trappeniers
,
M. J.
Van Bael
,
W.
Boon
,
K.
Rosseel
,
F.
Herlach
,
V. V.
Moshchalkov
, and
Y.
Bruynseraede
,
Rev. Sci. Instrum.
70
,
2708
(
1999
).
9.
E. L.
Bronaugh
,
Electromagn. Compat.
34
,
72
(
2002
).
10.
K.
Nakao
,
F.
Herlach
, and
T.
Goto
,
J. Phys. E
18
,
1018
(
1985
).
11.
Y. H.
Matsuda
,
F.
Herlach
,
S.
Ikeda
, and
N.
Miura
,
Rev. Sci. Instrum.
73
,
4288
(
2002
).
12.
G.
Dworschak
,
F.
Haberey
,
P.
Hidebrand
,
E.
Kneller
, and
D.
Schreiber
,
Rev. Sci. Instrum.
45
,
243
(
1974
).
13.
N.
Miura
,
T.
Goto
,
K.
Nakao
,
S.
Takeyama
,
T.
Sakakibara
,
T.
Haruyama
, and
T.
Kikuchi
,
Physica B
155
,
23
(
1989
).
14.
S.
Zherlitsyn
,
T.
Hermannsdorfer
,
B.
Wustmann
, and
J.
Wosnitza
,
IEEE Trans. Appl. Supercond.
20
,
672
(
2010
).
15.
B. E.
Kane
,
A. S.
Dzurak
,
G. R.
Facer
,
R. G.
Clark
,
R. P.
Starrett
,
A.
Skougarevsky
,
N. E.
Lumpkin
,
J. S.
Brooks
,
L. W.
Engel
,
N.
Miura
,
H.
Yokoi
,
T.
Takamasu
,
H.
Nakagawa
,
J. D.
Goettee
, and
D. G.
Rickel
,
Rev. Sci. Instrum.
68
,
3843
(
1997
).
16.
S.
Egami
and
H.
Watarai
,
Rev. Sci. Instrum.
80
,
093705
(
2009
).
17.
O. A.
Mironov
,
S.
Zherlitsyn
,
M.
Uhlarz
,
Y.
Skourski
,
T.
Palewski
, and
J.
Wosnitza
,
J. Low Temp. Phys.
159
,
315
(
2010
).
You do not currently have access to this content.