We discuss two geosynchronous gravitational wave (GW) mission concepts, which we generically name gLISA. One relies on the science instrument hosting program onboard geostationary commercial satellites, while the other takes advantage of recent developments in the aerospace industry that result in dramatic satellite and launching vehicle cost reductions for a dedicated geosynchronous mission. To achieve the required level of disturbance free-fall onboard these large and heavy platforms, we propose a new drag-free system, which we have named “two-stage” drag-free. It incorporates the Modular Gravitational Reference Sensor (developed at Stanford University) and does not rely on the use of μN thrusters. Although both mission concepts are characterized by different technical and programmatic challenges, individually they could be flown and operated at a cost significantly lower than those of previously envisioned gravitational wave missions, and in the year 2015 we will perform at JPL a detailed selecting mission analysis.

1.
K. S.
Thorne
,
Gravitational Radiation
, edited by
S. W.
Hawking
and
W.
Israel
(
Cambridge University Press
,
New York
,
1987
), p.
330
.
2.
M.
Tinto
and
M. E. S.
Alves
,
Phys. Rev. D
82
,
122003
(
2010
).
3.
M. E. S.
Alves
and
M.
Tinto
,
Phys. Rev. D
83
,
123529
(
2011
).
4.
See http://www.ligo.caltech.edu/ for the LIGO project.
5.
See http://www.virgo.infn.it/ for the VIRGO project.
6.
See http://www.geo600.uni-hannover.de/ for the GEO600 project.
7.
See http://tamago.mtk.nao.ac.jp/ for the TAMA project.
8.
LISA: Unveiling a hidden Universe (ESA publication # ESA/SRE, 2011) Vol.3,http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48364.
9.
W. T.
Ni
,
Int. J. Mod. Phys. D
11
(
7
),
947
(
2002
).
10.
N.
Seto
,
S.
Kawamura
, and
T.
Nakamura
,
Phys. Rev. Lett.
87
,
221103
(
2001
).
11.
B.
Hiscock
and
R. W.
Hellings
,
Bull. Am. Astron. Soc.
29
,
1312
(
1997
).
12.
See http://pcos.gsfc.nasa.gov/studies/gravitational-wave-mission.php/ for the NASA’s Physics of the Cosmos.
13.
M.
Tinto
,
J. C. N.
de Araujo
,
O. D.
Aguiar
, and
M. E. S.
Alves
, “A geostationary gravitational wave interferometer (GEOGRAWI),” e-print arXiv:gr-qc/1111.2576 (unpublished).
14.
S. T.
Mcwilliams
, “Geostationary antenna for disturbance-free laser interferometry (GADFLI),” e-print arXiv:gr-qc/1111.3708v1 (unpublished).
15.
See http://nspires.nasaprs.com/external/ for NASA solicitation no. NNH11ZDA019L titled: Concepts for the NASA gravitational-wave mission.
16.
Common Instrument Interface Project, Hosted Payload Guidelines Document, NASA document no.: CII-CI-0001 version: Rev A (Effective Date: 04/11/2013).
17.
M.
Tinto
,
J. C. N.
de Araujo
,
O. D.
Aguiar
, and
M. E. S.
Alves
,
Astropart. Phys.
48
,
50
(
2013
).
18.
M.
Tinto
,
J. C. N.
de Araujo
,
H. K.
Kuga
,
M. E. S.
Alves
, and
O. D.
Aguiar
, “
Orbit analysis of a geostationary gravitational wave interferometer detector array
,”
Celestial Mech. Dyn. Astron.
(
2014
), (submitted).
19.
F.
Antonucci
,
M.
Armano
,
H.
Audley
,
G.
Auger
,
M.
Benedetti
,
P.
Binetruy
,
J.
Bogenstahl
,
D.
Bortoluzzi
,
P.
Bosetti
,
N.
Brandt
,
M.
Caleno
,
P.
Cañizares
,
A.
Cavalleri
,
M.
Cesa
,
M.
Chmeissani
,
A.
Conchillo
,
G.
Congedo
,
I.
Cristofolini
,
M.
Cruise
,
K.
Danzmann
,
F.
De Marchi
,
M.
Diaz-Aguilo
,
I.
Diepholz
,
G.
Dixon
,
R.
Dolesi
,
N.
Dunbar
,
J.
Fauste
,
L.
Ferraioli
,
V.
Ferrone
,
W.
Fichter
,
E.
Fitzsimons
,
M.
Freschi
,
A. G.
Marin
,
C. G.
Marirrodriga
,
R.
Gerndt
,
L.
Gesa
,
F.
Gilbert
,
D.
Giardini
,
C.
Grimani
,
A.
Grynagier
,
B.
Guillaume
,
F.
Guzmán
,
I.
Harrison
,
G.
Heinzel
,
V.
Hernández
,
M.
Hewitson
,
D.
Hollington
,
J.
Hough
,
D.
Hoyland
,
M.
Hueller
,
J.
Huesler
,
O.
Jennrich
,
P.
Jetzer
,
B.
Johlander
,
N.
Karnesis
,
C.
Killow
,
X.
Llamas
,
I.
Lloro
,
A.
Lobo
,
R.
Maarschalkerweerd
,
S.
Madden
,
D.
Mance
,
I.
Mateos
,
P. W.
Mcnamara
,
J.
Mendes
,
E.
Mitchell
,
A.
Monsky
,
D.
Nicolini
,
D.
Nicolodi
,
M.
Nofrarias
,
F.
Pedersen
,
M.
Perreur-Lloyd
,
E.
Plagnol
,
P.
Prat
,
G. D.
Racca
,
J.
Ramos-Castro
,
J.
Reiche
,
J. A. R.
Perez
,
D.
Robertson
,
H.
Rozemeijer
,
J.
Sanjuan
,
A.
Schleicher
,
M.
Schulte
,
D.
Shaul
,
L.
Stagnaro
,
S.
Strandmoe
,
F.
Steier
,
T. J.
Sumner
,
A.
Taylor
,
D.
Texier
,
C.
Trenkel
,
H.-B.
Tu
,
S.
Vitale
,
G.
Wanner
,
H.
Ward
,
S.
Waschke
,
P.
Wass
,
W. J.
Weber
,
T.
Ziegler
, and
P.
Zweifel
,
Classical Quantum Gravity
29
,
124014
(
2012
).
20.
E. M.
Soop
,
Handbook of Geostationary Orbits
(
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
,
1994
).
21.
K.-X.
Sun
,
G.
Allen
,
S.
Buchman
,
D.
Debra
, and
R.
Byer
,
Classical Quantum Gravity
22
,
S287
(
2005
).
22.
D. G.
Cook
, “
Solar radiation pressure issue for high-altitude satellites
,” Master thesis (
Department of the Air Force, Air University, Air Force Institute of Technology, Wright-Patterson Air Force Base
, Ohio,
2001
).
23.
D.
Debra
and
J. W.
Conklin
, “
Measurement of drag and its cancellation
,”
Classical and Quantum Gravity
28
(
9
),
094015
(
2011
).
24.
M.
Tinto
and
S. V.
Dhurandhar
, “
Time-delay interferometry
,”
Living Rev. Relativ.
17
,
6
(
2014
).
25.
See http://www spacex.com/falcon9 for the SpaceX company.
26.
See http://jplteamx.jpl.nasa.gov/ for the JPL TEAM-X.
27.
J. A.
Lipa
,
S.
Buchman
,
S.
Saraf
,
J.
Zhou
,
A.
Alfauwaz
,
J.
Conklin
,
G. D.
Cutler
, and
R. L.
Byer
, “Prospects for an advanced Kennedy-Thorndike experiment in low Earth orbit,” see http://arxiv.org/abs/1203.3914.
You do not currently have access to this content.