New developments in the field of microscopy enable to acquire increasing amounts of information from large sample areas and at an increased resolution. Depending on the nature of the technique, the information may reveal morphological, structural, chemical, and still other sample characteristics. In research fields, such as cell biology and materials science, there is an increasing demand to correlate these individual levels of information and in this way to obtain a better understanding of sample preparation and specific sample properties. To address this need, integrated systems were developed that combine nanometer resolution electron microscopes with optical microscopes, which produce chemically or label specific information through spectroscopy. The complementary information from electron microscopy and light microscopy presents an opportunity to investigate a broad range of sample properties in a correlated fashion. An important part of correlating the differences in information lies in bridging the different resolution and image contrast features. The trend to analyse samples using multiple correlated microscopes has resulted in a new research field. Current research is focused, for instance, on (a) the investigation of samples with nanometer scale distribution of inorganic and organic materials, (b) live cell analysis combined with electron microscopy, and (c) in situ spectroscopic and electron microscopy analysis of catalytic materials, but more areas will benefit from integrated correlative microscopy.

1.
S.
Redemann
and
T.
Müller-Reichert
,
J. Microsc.
251
(
2
),
109
-
112
(
2013
).
2.
B.
Knierim
,
B.
Luef
,
P.
Wilmes
,
R. I.
Webb
,
M.
Auer
,
L. R.
Comolli
, and
J. F.
Banfield
,
Environ. Microbiol. Rep.
4
(
1
),
36
-
41
(
2012
).
3.
A. V.
Agronskaia
,
J. A.
Valentijn
,
L. F.
van Driel
,
C. T. W. M.
Schneijdenberg
,
B. M.
Humbel
,
P. M. P
van Bergen en Henegouwen
,
A. J.
Verkleij
, and
A. J.
Koster
,
J. Struct. Biol.
164
,
183
-
189
(
2008
).
4.
R. F.
Egerton
,
Physical Principles of Electron Microscopy
(
Springer Science+Business Media, Inc., New York
,
2005
), pp.
125
-
143
.
5.
J.
Kikuchi
and
K.
Yasuhara
, “
Transmission electron microscopy (TEM)
,”
Supramolecular Chemistry: From Molecules to Nanomaterials
(
John Wiley & Sons, Ltd.
,
2012
), pp.
1
-
13
.
6.
D. B.
Williams
and
C.
Barry Carter
,
Transmission Electron Microscopy: A Textbook for Materials Science
, 2nd ed. (
Springer Science Business Media, LLC, New York
,
2009
), pp.
82
-
86
.
7.
L. F.
Drummy
,
J.
Yang
, and
D. C.
Martin
,
Ultramicroscopy
99
(
4
),
247
-
256
(
2004
).
8.
R.
Henderson
,
Q. Rev. Biophys.
28
(
2
),
171
-
193
(
1995
).
9.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy: A Textbook for Materials Science
, 2nd ed. (
Springer Science Business Media, LLC, New York
,
2009
), pp.
53
-
66
.
10.
D. B.
Williams
and
C. B.
Carter
,
Transmission Electron Microscopy: A Textbook for Materials Science
, 2nd ed. (
Springer Science Business Media, LLC, New York
,
2009
), pp.
39
-
43
.
11.
D. B.
Williams
and
C.
Barry
,
Transmission Electron Microscopy: A Textbook for Materials Science
, 2nd ed. (
Springer Science Business Media, LLC, New York
,
2009
), pp.
25
-
30
.
12.
J.
Nebesářová
and
M.
Vancová
,
Microsc. Microanal.
13
(
3
),
248
-
249
(
2007
), available online at http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=1330180&fulltextType=PI&fileId=S143192760708124X.
13.
J.
Goldstein
,
D. E.
Newbury
,
D. C.
Joy
,
C. E.
Lyman
,
P.
Echlin
,
E.
Lifshin
,
L.
Sawyer
, and
J. R.
Michael
,
Scanning Electron Microscopy and X-ray Microanalysis
, 3rd ed. (
Kluwer Academic/Plenum Publishers, New York
,
2003
), pp.
27
-
29
.
14.
E.
Pretorios
,
Microsc. Res. Tech.
73
(
3
),
225
-
228
(
2010
).
15.
J. P.
Langmore
and
M. F.
Smith
,
Ultramicroscopy
46
,
349
-
373
(
1992
).
16.
J.
Goldstein
,
D. E.
Newbury
,
D. C.
Joy
,
C. E.
Lyman
,
P.
Echlin
,
E.
Lifshin
,
L.
Sawyer
, and
J. R.
Michael
,
Scanning Electron Microscopy and X-ray Microanalysis
, 3rd ed. (
Kluwer Academic/Plenum Publishers, New York
,
2003
), pp.
75
-
96
.
17.
H.
Farhangt
,
E.
Napchant
, and
B. H.
Blottt
,
J. Phys. D: Appl. Phys.
26
(
12
),
2266
-
2271
(
1993
).
18.
G.
Eckhardt
and
W. G.
Wagner
,
J. Mol. Spectrosc.
19
(
4
),
407
-
411
(
1966
).
19.
Y.
Kato
and
H.
Takuma
,
J. Opt. Soc. Am.
61
(
3
),
347
-
350
(
1971
).
20.
B. N. G.
Giepmans
,
S. R.
Adams
,
M. H.
Ellisman
, and
R. Y.
Tsien
,
Science
312
(
5771
),
217
-
224
(
2006
).
21.
Y.
Su
,
R.
Whan
,
C.
Empsen
,
L.
Soon
, and
F.
Braet
,
Microsc.: Sci., Technol., Appl. Educ.
3
,
2050
-
2061
(
2010
), available online at http://www.formatex.info/microscopy4/2050-2061.pdf.
22.
M.
Schrob
and
J. A. G.
Briggs
,
Ultramicroscopy
143
,
24
-
32
(
2014
).
23.
F. G. A.
Faas
,
M.
Barcena
,
A. V.
Agronskaia
,
H. C.
Gerritsen
,
K. B.
Moscicka
,
C. A.
Diebolder
,
L. F.
van Driel
,
R. W. A. L.
Limpens
,
E.
Bos
,
R. B. G.
Ravelli
,
R. I.
Koning
, and
A. J.
Koster
,
J. Struct. Biol.
181
(
3
),
283
-
290
(
2013
).
24.
D.
Muzzey
and
A.
van Oudenaarden
,
Annu. Rev. Cell Dev. Biol.
25
,
301
-
327
(
2009
).
25.
S.
Auinger
and
J. V.
Small
,
Methods Cell Biol.
88
,
257
-
272
(
2008
).
26.
M. A.
Karreman
,
A. V.
Agronskaia
,
E. G.
van Donselaar
,
K.
Vocking
,
F.
Fereidoni
,
B. M.
Humbel
,
C. T.
Verrips
,
A. J.
Verkleij
, and
H. C.
Gerritsen
,
J. Struct. Biol.
180
(
2
),
382
-
386
(
2012
).
27.
N.
Liv
,
A. C.
Zonnevylle
,
A. C.
Narvaez
,
A. P. J.
Effting
,
P. W.
Voorneveld
,
M. S.
Lucas
,
J. C.
Hardwick
,
R. A.
Wepf
,
P.
Kruit
, and
J. P.
Hoogenboom
,
PLoS One
8
(
2
),
e55707
(
2013
).
28.
C.
Otto
,
C. J.
de Grauw
,
J. J.
Duindam
,
N. M.
Sijtsema
, and
J.
Greve
,
J. Raman Spectrosc.
28
(
2-3
),
143
-
150
(
1997
).
29.
W. H.
Weber
and
R.
Merlin
,
Raman Scattering in Materials Science
(
Springer-Verlag
,
Berlin, Heidelberg
,
2000
).
30.
Y.
Aksenov
,
A. A.
van Apeldoorn
,
J. D.
de Bruijn
,
C. A.
van Blitterswijk
,
J.
Greve
, and
C.
Otto
,
Microsc. Microanal.
8
(
2
),
1386
-
1387
(
2002
), available online at http://journals.cambridge.org/action/displayFulltext?type=1&fid=127670&jid=MAM&volumeId=8&issueId=S02&aid=127669.
31.
G. P.
Resch
,
M.
Brandstetter
,
L.
Königsmaier
,
E.
Urban
, and
A. M.
Pickl-Herk
,
Cold Spring Harbor Protoc.
803
-
814
(
2011
).
32.
E.
Bos
,
C.
SantAnna
,
H.
Gnaegi
,
R. F.
Pinto
,
R. B. G.
Ravelli
,
A. J.
Koster
,
W.
de Souza
, and
P. J.
Peters
,
J. Struct. Biol.
175
(
1
),
62
-
72
(
2011
).
33.
S.
Thiberge
,
O.
Zik
, and
E.
Moses
,
Rev. Sci. Instrum.
75
(
7
),
2280
-
2289
(
2004
).
34.
P.
Luo
,
I.
Morrison
,
A.
Dudkiewicz
,
K.
Tiede
,
E.
Boyes
,
P.
O’Toole
,
S.
Park
, and
A. B.
Boxall
,
J. Microsc.
250
(
1
),
32
-
41
(
2013
).
35.
Y.
Aksenov
, “
Raman microscopy in an electron microscope: Combining chemical and morphological analysis
,” Ph.D. dissertation (
University of Twente
,
2003
), pp.
57
-
59
.
36.
M. A.
Karreman
,
A. V.
Agronskaia
,
A. J.
Verkleij
,
F. F. M.
Cremers
,
H. C.
Gerritsen
, and
B. M.
Humbel
,
Biol. Cell
101
,
287
-
299
(
2009
).
37.
J.
Dubochet
,
M.
Aadrian
,
J. J.
Chang
,
J. C.
Homo
,
J.
Lepault
,
A. W.
McDowall
, and
P.
Schultz
,
Q. Rev. Biophys.
21
(
2
),
129
-
228
(
1988
).
38.
J. M.
Plitzko
,
A.
Rigort
, and
A.
Leis
,
Curr. Opin. Biotechnol.
20
(
1
),
83
-
89
(
2009
).
39.
A.
Sartori
,
R.
Gatz
,
F.
Beck
,
A.
Rigort
,
W.
Baumeister
, and
J. M.
Plitzko
,
J. Struct. Biol.
160
(
2
),
135
-
145
(
2007
).
40.
J.
Hazekamp
,
M. G.
Reed
,
C. V.
Howard
,
A. A.
van Apeldoorn
, and
C.
Otto
,
J. Microsc.
244
(
2
),
122
-
128
(
2011
).
41.
I. M.
Abrams
and
J. W.
McBain
,
J. Appl. Phys.
15
(
8
),
607
-
609
(
1944
).
42.
N.
de Jonge
,
W. C.
Begelow
, and
G. M.
Veith
,
Nano Lett.
10
(
3
),
1028
-
1031
(
2010
).
43.
D. B.
Peckys
,
J. P.
Baudoin
,
M.
Eder
,
U.
Werner
, and
N.
de Jonge
,
Sci. Rep.
3
,
2626
(
2013
).
44.
D. B.
Peckys
,
M. J.
Dukes
, and
N.
de Jonge
,
Methods Mol. Biol.
1117
,
527
-
540
(
2014
).
45.
Y.
Maruyama
,
T.
Ebihara
,
H.
Nishiyama
,
M.
Suga
, and
C.
Sato
,
J. Struct. Biol.
180
(
2
),
259
-
270
(
2012
).
46.
M.
Suga
,
H.
Nishiyama
,
M.
Koizumi
,
K.
Teramoto
,
S.
Kitamura
,
M.
Tsuyuki
,
Y.
Ishimori
,
T.
Sato
,
T.
Ebihara
,
T.
Ogura
,
Y.
Maruyama
,
K.
Mio
, and
C.
Sato
, Company: JEOL Product Poster Clairscope, “The New Atmospheric Scanning Electron Microscope observes cells in solution as an optical- and electron-correlative microscope,” available online at http://www.jeolusa.com/DesktopModules/Bring2mind/DMX/Download.aspx?EntryId=622&Command=Core_Download&PortalId=2&TabId=320.
47.
M.
Picher
,
S.
Mazzucco
,
S.
Blankenship
, and
R.
Sharma
,
Ultramicroscopy
150
,
10
-
15
(
2015
).
48.
T. W.
Huang
,
S. Y.
Liu
,
Y. J.
Chuang
,
H. Y.
Hsieh
,
C. Y.
Tsai
,
Y. T.
Huang
,
U.
Mirsaidov
,
P.
Matsudaira
,
F. G.
Tseng
,
C. S.
Changh
, and
F. R.
Chen
,
Lab Chip
12
,
340
-
347
(
2012
).
49.
M.
Krueger
,
S.
Berg
,
D.
Stone
,
E.
Strelcov
,
D. A.
Dikin
,
J.
Kim
,
L. J.
Cote
,
J.
Huang
, and
A.
Kolmakov
,
ACS Nano
5
(
12
),
10047
-
10054
(
2011
).
50.
A.
Kolmakov
,
D. A.
Dikin
,
L. J.
Cote
,
J.
Huang
,
M. K.
Abyaneh
,
M.
Amati
,
L.
Gregoratti
,
S.
Gunther
, and
M.
Kiskinova
,
Nat. Nanotechnol.
6
(
10
),
651
-
657
(
2011
).
51.
A. J.
Koster
,
R.
Grimm
,
D.
Typke
,
R.
Hegerl
,
A.
Stoschek
,
J.
Walz
, and
W.
Baumeister
,
J. Struct. Biol.
120
(
3
),
276
-
308
(
1997
).
52.
R. A.
Crowther
,
D. J.
DeRosier
, and
A.
Klug
,
Proc. R. Soc. London
317
(
1530
),
319
-
340
(
1970
).
53.
C. A.
Diebolder
,
A. J.
Koster
, and
R. I.
Koning
,
J. Microsc.
248
(
1
),
1
-
5
(
2012
).
54.
P. A.
Midgley
and
R. E.
Dunin-Borkowski
,
Nat. Mater.
8
(
4
),
271
-
280
(
2009
).
55.
A.
Rigort
,
F. J. B.
Bäuerlein
,
A.
Leis
,
M.
Gruska
,
C.
Hoffmann
,
T.
Laugks
,
U.
Böhm
,
M.
Eibauer
,
H.
Gnaegi
,
W.
Baumeister
, and
J. M.
Plitzko
,
J. Struct. Biol.
172
(
2
),
169
-
179
(
2010
).
56.
C. A.
Volkert
and
A. M.
Minor
,
MRS Bull.
32
,
389
-
395
(
2007
).
57.
L. A.
Giannuzzi
and
F. A.
Stevie
,
Introduction to Focused Ion Beams
(
Springer Science+Business Media, Inc., New York
,
2005
), pp.
173
-
198
.
58.
K. M.
Strunk
,
K.
Wang
,
D.
Ke
,
J. L.
Gray
, and
P.
Zhang
,
J. Microsc.
247
(
3
),
220
-
227
(
2012
).
59.
A.
Rigort
,
F. J. B.
Bäuerlein
,
E.
Villa
,
M.
Eibauer
,
T.
Laugks
,
W.
Baumeister
, and
J. M.
Plitzko
,
Proc. Natl. Acad. Sci. U. S. A.
109
(
12
),
4449
-
4454
(
2012
).
60.
M.
Kato
,
N.
Kawase
,
T.
Kaneko
,
S.
Toh
,
S.
Matsumura
, and
H.
Jinnai
,
Ultramicroscopy
108
(
3
),
221
-
229
(
2008
).
61.
B. K.
Rath
and
M.
Marko
,
J. Struct. Biol.
120
(
3
),
210
-
218
(
1997
).
62.
P.
Zhang
,
Curr. Opin. Struct. Biol.
23
(
5
),
763
-
770
(
2013
).
63.
H.
Schwarz
and
B.
Humbel
,
Electron Microscopy: Methods and Protocols
(
Humana Press
,
2007
), Vol.
369
, pp.
229
-
256
.
64.
L. F.
van Driel
,
J. A.
Valentijn
,
K. M.
Valentijn
,
R. I.
Koning
, and
A. J.
Koster
,
Eur. J. Cell Biol.
88
(
11
),
669
-
684
(
2009
).
65.
C.
Villinger
,
H.
Gregorius
,
C.
Kranz
,
K.
Höhn
,
C.
Munzberg
,
G.
von Wichert
,
B.
Mizaikoff
,
G.
Wanner
, and
P.
Walther
,
Histochem. Cell Biol.
138
(
4
),
549
-
556
(
2012
).
66.
K. L.
Briggman
and
D. D.
Bock
,
Curr. Opin. Neurobiol.
22
(
1
),
154
-
161
(
2012
).
67.
A. J.
Bushby
,
K. M. Y.
P’ng
,
R. D.
Young
,
C.
Pinali
,
C.
Knupp
, and
A. J.
Quantock
,
Nat. Protoc.
6
(
6
),
845
-
858
(
2011
).
68.
G. E.
Murphy
,
K.
Narayan
,
B. C.
Lowekamp
,
L. M.
Hartnell
,
J. A. W.
Heymann
,
J.
Fu
, and
S.
Subramaniam
,
J. Struct. Biol.
176
(
3
),
268
-
278
(
2011
).
69.
K.
Narayan
,
C. M.
Danielson
,
K.
Lagarec
,
B. C.
Lowekamp
,
P.
Coffman
,
A.
Laquerre
,
M. W.
Phaneuf
,
T. J.
Hope
, and
S.
Subramaniam
,
J. Struct. Biol.
185
(
3
),
278
-
284
(
2014
).
70.
B. O.
Leung
and
K. C.
Chou
,
Appl. Spectrosc.
65
(
9
),
967
-
980
(
2011
).
71.
S. W.
Hell
and
J.
Wichmann
,
Opt. Lett.
19
(
11
),
780-782
(
1994
).
72.
M. J.
Rust
,
M.
Bates
, and
X.
Zhuang
,
Nat. Methods
3
,
793
-
796
(
2006
).
73.
S.
Jia
,
J. C.
Vaughan
, and
X.
Zhuang
,
Nat. Photonics
8
(
4
),
302
-
306
(
2014
).
74.
E.
Betzig
,
G. H.
Patterson
,
R.
Sougrat
,
O. W.
Lindwasser
,
S.
Olenych
,
J. S.
Bonifacino
,
M. W.
Davidson
,
J.
Lippincott-Schwartz
, and
H. F.
Hess
,
Science
313
(
5793
),
1642
-
1645
(
2006
).
75.
S.
Hell
and
E. H. K.
Stelzer
,
Opt. Commun.
93
(
5-6
),
277
-
282
(
1992
).
76.
S. L.
Veatch
,
B. B.
Machta
,
S. A.
Shelby
,
E. N.
Chiang
,
D. A.
Holowka
, and
B. A.
Baird
,
PLoS One
7
(
2
),
1
-
13
(
2012
).
77.
B. G.
Kopek
,
G.
Shtengel
,
C. S.
Xu
,
D. A.
Clayton
, and
H. F.
Hess
,
Proc. Natl. Acad. Sci. U. S. A.
190
(
16
),
6136
-
6141
(
2012
).
78.
S.
Watanabe
,
A.
Punge
,
G.
Hollopeter
,
K. I.
Willig
,
R. J.
Hobson
,
M. W.
Davis
,
S. W.
Hell
, and
E. M.
Jorgense
,
Nat. Methods
8
(
1
),
80
-
84
(
2011
).
79.
G.
Perinetti
,
T.
Müller
,
A.
Spaar
,
R.
Polishchuk
,
A.
Luini
, and
A.
Egner
,
Traffic
10
(
4
),
379
-
391
(
2009
).
80.
R.
Kaufmann
,
P.
Schellenberger
,
E.
Seirdake
,
I. M.
Dobbie
,
E. Y.
Jones
,
E.
Davis
,
C.
Hagen
, and
K.
Grünewald
,
Nano Lett.
14
(
7
),
4171
-
4175
(
2014
).
81.
Y. W.
Chang
,
S.
Chen
,
E. I.
Tocheva
,
A.
Treuner-Lange
,
S.
Löbach
,
L.
Søgaard-Andersen
, and
G. J.
Jensen
,
Nat. Methods
11
(
7
),
737
-
739
(
2014
).
82.
E.
Bailo
and
V.
Deckert
,
Chem. Soc. Rev.
37
(
5
),
921
-
930
(
2008
).
83.
A.
Hartschuh
,
E. J.
Sanchez
,
X. S.
Xie
, and
L.
Novotny
,
Phys. Rev. Lett.
90
(
9
),
095503
(
2003
).
84.
R.
Zhang
,
Y.
Zhang
,
Z. C.
Dong
,
S.
Jiang
,
L. G.
Chen
,
L.
Zhang
,
Y.
Liao
,
J.
Aizpurua
,
Y.
Luo
,
J. L.
Yang
, and
J. G.
Hou
,
Nature
498
(
7452
),
82
-
86
(
2013
).
85.
J. I.
Goldstein
,
D. E.
Newbury
,
D. C.
Joy
,
C. E.
Lyman
,
P.
Echlin
,
E.
Lifshin
,
L.
Sawyer
, and
J. R.
Michael
,
Scanning Electron Microscopy and X-Ray Microanalysis
, 3rd ed. (
Kluwer Academic/Plenum Publishers, New York
,
2003
), pp.
271
-
274
.
86.
J. I.
Goldstein
,
D. E.
Newbury
,
D. C.
Joy
,
C. E.
Lyman
,
P.
Echlin
,
E.
Lifshin
,
L.
Sawyer
, and
J. R.
Michael
,
Scanning Electron Microscopy and X-Ray Microanalysis
, 3rd ed. (
Kluwer Academic/Plenum Publishers, New York
,
2003
), pp.
537
-
555
.
87.
J. I.
Goldstein
,
D. E.
Newbury
,
D. C.
Joy
,
C. E.
Lyman
,
P.
Echlin
,
E.
Lifshin
,
L.
Sawyer
, and
J. R.
Michael
,
Scanning Electron Microscopy and X-Ray Microanalysis
, 3rd ed. (
Kluwer Academic/Plenum Publishers, New York
,
2003
), p.
499
.
88.
F. J. G.
de Abajo
,
Rev. Mod. Phys.
82
(
1
),
209
-
275
(
2010
).
89.
M. E.
Hoenk
and
K. J.
Vahala
,
Rev. Sci. Instrum.
60
(
2
),
226
-
230
(
1989
).
90.
D. R.
Glenn
,
H.
Zhang
,
N.
Kasthuri
,
R.
Schalek
,
P. K.
Lo
,
A. S.
Trifonov
,
H.
Park
,
J. W.
Lichtman
, and
R. L.
Walsworth
,
Nat. Sci. Rep.
2
,
865
(
2012
).
91.
A. C.
Zonnevylle
,
R. F. C.
van Tol
,
N.
Liv
,
A. C.
Narvaez
,
A. P. J.
Effting
,
P.
Kruit
, and
J. P.
Hoogenboom
,
J. Microsc.
252
(
1
),
58
-
70
(
2013
).
92.
A. C.
Narvaez
,
I.
Gerward
,
C.
Weppelman
,
R. J.
Moerland
,
N.
Liv
,
A. C.
Zonnevylle
,
P.
Kruit
, and
J. P.
Hoogenboom
,
Opt. Express
21
(
24
),
29968
-
29978
(
2013
).
93.
A.
Schropp
,
R.
Hoppe
,
J.
Patommel
,
D.
Samberg
,
F.
Seiboth
,
S.
Stephan
,
G.
Wellenreuther
,
G.
Falkenberg
, and
C. G.
Schroer
,
Appl. Phys. Lett.
100
(
25
),
253112
(
2012
).
94.
P. R.
Edwards
,
L. K.
Jagadamma
,
J.
Bruckbauer
,
C.
Liu
,
P.
Shields
,
D.
Allsopp
,
T.
Wang
, and
R. W.
Martin
,
Microsc. Microanal.
18
(
6
),
1212
-
1219
(
2012
).
95.
C.
Smith
,
Nature
492
(
7428
),
293
-
297
(
2012
).
96.
See http://delmic.com/wp-content/uploads/2012/08/folder_secom.pdf for Company: Delmic. Product folder Secom. p. 3. (retrieved October 15, 2013).
97.
See http://www.fei.com/products/TEM/iCorr/?ind=LS for Company: FEI. (retrieved September 23, 2014).
98.
See http://www.hybriscan.com/products/hybrid-microscopes for Company: Hybriscan. (retrieved October 15, 2013).
99.
B. N. G.
Giepmans
,
Histochem. Cell Biol.
130
(
2
),
211
-
217
(
2008
).
100.
M. A.
Karreman
,
E. G.
van donselaar
,
A. V.
Agronskaia
,
C. T.
Verrips
, and
H. C.
Gerritsen
,
J. Histochem. Cytochem.
61
(
3
),
236
-
247
(
2013
).
101.
M. B.
Wabuyele
,
F.
Yan
,
G. D.
Griffin
, and
T.
Vo-Dinh
,
Rev. Sci. Instrum.
76
(
6
),
063710
(
2005
).
102.
L.
Hartsuiker
,
W.
Petersen
,
R. G.
Rayavarapu
,
A. T. M.
Lenferink
,
A. A.
Poot
,
L. W. M. M.
Terstappen
,
A. G. J. M.
van Leeuwen
,
S.
Manohar
, and
C.
Otto
,
Appl. Spectrosc.
66
(
1
),
66
-
74
(
2012
).
103.
L.
Hartsuiker
, “
Microspectroscopic characterisation of gold nanorods for cancer cell detection
,” Ph. D. dissertation (
University of Twente
,
2011
).
104.
Y.
Wang
,
N.
Lu
,
W.
Wang
,
L.
Liu
,
L.
Feng
,
Z.
Zeng
,
H.
Li
,
W.
Xu
,
Z.
Wu
,
W.
Hu
,
Y.
Lu
, and
L.
Chi
,
Nano Res.
6
(
3
),
159
-
166
(
2013
).
105.
M.
Jin
,
V.
Pully
,
C.
Otto
,
A.
van den Berg
, and
E. T.
Carlen
,
J. Phys. Chem. C
114
(
50
),
21953
-
21959
(
2010
).
106.
107.
R. J.
Young
and
M. V.
Moore
,
Introduction to Focused Ion Beams. Dual-Beam (FIB-SEM) Systems
(
Springer Science+Business Media, Inc., New York
,
2005
), pp.
247
-
268
.
You do not currently have access to this content.