Piezoelectric materials respond to external stimuli by adjusting atomic positions. In solid-solutions, the changes occurring in atomic scale are very complex since the short- and long-range order are different. Standard methods used in diffraction data analysis fail to model the short-range order accurately. Pressure-induced cation displacements in ferroelectric Pb(Zr0.45Ti0.55)O3 perovskite oxide are modeled by starting from a short-range order. We show that the model gives the average structure correctly and properly describes the local structure. The origin of the microstrain in lead zirconate titanate is the spatially varying Zr and Ti concentration and atomic distances, which is taken into account in the simulation. High-pressure neutron powder diffraction and simulation techniques are applied for the determination of atomic positions and bond-valences as a function of pressure. Under hydrostatic pressure, the material loses its piezoelectric properties far before the transition to the cubic phase takes place. The total cation valence +6 is preserved up to 3.31 GPa by compensating the increasing B-cation valence by decreasing Pb-displacement from the high-symmetry position. At 3.31 GPa, Pb-displacement is zero and the material is no more ferroelectric. This is also the pressure at which the Pb-valence is minimized. The average structure is still tetragonal. The model for microstrain predicts that the transition occurs over a finite pressure range: Pb-displacements are spatially varying and follow the distribution of Zr and Ti ions.

1.
R. E.
Newnham
,
Properties of Materials: Anisotropy, Symmetry, Structure
(
Oxford University Press
,
Oxford,
2004
).
2.
B.
Jaffe
,
W. R.
Cook
, and
H.
Jaffe
,
Piezoelectric Ceramics
(
Academic Press
,
London
1971
).
3.
J.
Frantti
,
J.
Lappalainen
,
S.
Eriksson
,
V.
Lantto
,
S.
Nishio
,
M.
Kakihana
,
S.
Ivanov
, and
H.
Rundlöf
,
Jpn. J. Appl. Phys., Part 1
39
,
5697
(
2000
).
4.
A. M.
Glazer
,
P. A.
Thomas
,
K. Z.
Baba-Kishi
,
G. K. H.
Pang
, and
C. W.
Tai
,
Phys. Rev. B
70
,
184123
(
2004
).
5.
J.
Frantti
,
Y.
Fujioka
,
A.
Puretzky
,
Y.
Xie
,
Z.-G.
Ye
, and
A. M.
Glazer
,
J. Appl. Phys.
113
,
174104
(
2013
).
6.
I. D.
Brown
,
The Chemical Bond in Inorganic Chemistry: The Bond Valence Model
(
Oxford University Press
,
New York
2009
).
7.
L. C.
Ming
,
S. R.
Shieh
,
Y.
Kobayashi
,
S.
Endo
,
O.
Shimomura
, and
T.
Kikegawa
, in
Properties of Earth and Planetary Materials at High Pressure and Temperature
, edited by
M. H.
Manghnani
and
T.
Yagi
(
American Geophysical Union
,
Washington, DC,
1998
).
8.
J.
Zhu
,
H.
Xu
,
J.
Zhang
,
C.
Jin
,
L.
Wang
, and
Y.
Zhao
,
J. Appl. Phys.
110
,
084103
(
2011
).
9.
S. G.
Jabarova
,
D. P.
Kozlenkoa
,
S. E.
Kichanova
,
A. V.
Belushkina
,
B. N.
Savenkoa
,
R. Z.
Mextievab
, and
C.
Lathe
,
Phys. Solid State
53
,
2300
(
2011
).
10.
A.
Sani
,
M.
Hanfland
, and
D.
Levy
,
J. Phys.: Condens. Matter
14
,
10601
(
2002
).
11.
J. A.
Sanjurjo
,
E.
López-Cruz
, and
G.
Burns
,
Phys. Rev. B
28
,
7260
(
1983
).
12.
J.
Zhu
,
J.
Zhang
,
H.
Xu
,
S. C.
Vogel
,
C.
Jin
,
J.
Frantti
, and
Y.
Zhao
,
Sci. Rep.
4
,
3700
(
2014
).
13.
J.
Frantti
,
Y.
Fujioka
, and
R. M.
Nieminen
,
J. Phys. Chem. B
111
,
4287
(
2007
).
14.
J.
Frantti
,
Y.
Fujioka
,
J.
Zhang
,
S. C.
Vogel
,
Y.
Wang
,
Y.
Zhao
, and
R. M.
Nieminen
,
J. Phys. Chem. B
113
,
7967
(
2009
).
15.
H.
Yokota
,
N.
Zhang
,
A. E.
Taylor
,
P. A.
Thomas
, and
A. M.
Glazer
,
Phys. Rev. B
80
,
104109
(
2009
).
16.
J.
Frantti
,
S.
Ivanov
,
S.
Eriksson
,
H.
Rundlöf
,
V.
Lantto
,
J.
Lappalainen
, and
M.
Kakihana
,
Phys. Rev. B
66
,
064108
(
2002
);
J.
Frantti
,
S.
Eriksson
,
S.
Hull
,
V.
Lantto
,
H.
Rundlöf
, and
M.
Kakihana
,
J. Phys.: Condens. Matter.
15
,
6031
(
2003
).
17.
J.
Frantti
,
Y.
Fujioka
,
J.
Zhang
,
S.
Wang
,
S. C.
Vogel
,
R. M.
Nieminen
,
A. M.
Asiri
,
Y.
Zhao
,
A. Y.
Obaid
, and
I. A.
Mkhalid
,
J. Appl. Phys.
112
,
014104
(
2012
).
18.
H. J.
Terpstra
,
R. A.
de Groot
, and
C.
Haas
,
Phys. Rev. B
52
,
11690
(
1995
).
19.
D.
Le Bellac
,
J. M.
Kiat
,
P.
Garnier
,
H.
Moudden
,
Ph.
Sciau
,
P. A.
Buffat
, and
G.
André
,
Phys. Rev. B
52
,
13184
(
1995
).
20.
A. M.
Glazer
and
S. A.
Mabud
,
Acta Crystallogr., Sect. B: Struct. Sci.
34
,
1065
(
1978
).
21.
W. L.
Warren
,
J.
Robertson
,
D.
Dimos
,
B. A.
Tuttle
,
G. E.
Pike
, and
D. A.
Payne
,
Phys. Rev. B
53
,
3080
(
1996
).
22.
D. L.
Corker
,
A. M.
Glazer
,
R. W.
Whatmore
,
A.
Stallard
, and
F.
Fauth
,
J. Phys.: Condens. Matter
10
,
6251
(
1998
).
23.
J.
Ricote
,
D. L.
Corker
,
R. W.
Whatmore
,
S. A.
Impey
,
A. M.
Glazer
,
J.
Dec
, and
K.
Roleder
,
J. Phys.: Condens. Matter
10
,
1767
(
1998
).
24.
D. J.
Goossens
,
Acc. Chem. Res.
46
,
2597
(
2013
).
25.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
41
,
653
(
2008
).
26.
Y.
Zhao
,
R. B.
Von Dreele
, and
J. G.
Morgan
,
High Press. Res.
16
,
161
(
1999
).
27.
Y.
Zhao
,
D.
He
,
J.
Qian
,
C.
Pantea
,
K. A.
Lokshin
,
J.
Zhang
, and
L. L.
Daemen
, “
Development of high PT neutron diffraction at LANSCE—toroidal anvil press, TAP-98, in the HIPPO diffractometer
,” in
Advances in High-Pressure Technology for Geophysical Applications
, edited by
J.
Chen
,
Y.
Wang
,
T. S.
Duffy
,
G.
Shen
, and
L. P.
Dobrzhinetskaya
(
Elsevier Science and Technology
,
New York
,
2005
), pp.
461
474
.
28.
H.-R.
Wenk
,
L.
Lutterotti
, and
S.
Vogel
,
Nucl. Instrum. Methods Phys. Res. A
515
,
575
(
2003
).
29.
S. C.
Vogel
,
C.
Hartig
,
L.
Lutterotti
,
R. B.
Von Dreele
,
H.-R.
Wenk
, and
D. J.
Williams
,
Powder Diffr.
19
,
65
(
2004
).
30.
A. C.
Larson
and
R. B.
Von Dreele
, General Structure Analysis System (LANSCE MS-H805) (Los Alamos National Laboratory, Los Alamos, NM,
2000
).
31.
B. H.
Toby
,
J. Appl. Crystallogr.
34
,
210
(
2001
).
32.
D. L.
Decker
,
J. Appl. Phys.
42
,
3239
(
1971
).
33.
N. W.
Thomas
and
A.
Beitollahi
,
Acta Crystallogr., Sect. B: Struct. Sci.
50
,
549
(
1994
).
34.
J.
Frantti
and
Y.
Fujioka
, “
Method and system for analysing data obtained using scattering measurements from disordered material
,” WO2011/018554 - EP2464962 B1 (2014).
You do not currently have access to this content.