The CoLaPipe is a novel test facility at the Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg (BTU Cottbus-Senftenberg), set up to investigate fully developed pipe flow at high Reynolds numbers (Rem ⩽ 1.5 × 106). The design of the CoLaPipe is closed-return with two available test sections providing a length-to-diameter ratio of L/D = 148 and L/D = 79. Within this work, we introduce the CoLaPipe and describe the various components in detail, i.e., the settling chamber, the inlet contraction, the blower, bends, and diffusers as well as the cooling system. A special feature is the numerically optimized contraction design. The applications of different measuring techniques such as hot-wire anemometry and static pressure measurements to quantitatively evaluate the mean flow characteristics and turbulence statistics are discussed as well. In addition, capabilities and limitations of available and new pipe flow facilities are presented and reconsidered based on their length-to-diameter ratio, the achieved Reynolds numbers, and the resulting spatial resolution. Here, the focus is on the facility design, the presentation of some basic characteristics, and its contribution to a reviewed list of specific questions still arising, e.g., scaling and structural behavior of turbulent pipe flow as well as the influence of the development length on turbulence investigations.

1.
O.
Reynolds
,
Philos. Trans. R. Soc. London
174
,
935
(
1883
).
2.
E.
Zanoun
,
M.
Kito
, and
C.
Egbers
,
J. Fluids Eng.
131
,
061204
(
2009
).
3.
V.
Patel
and
M.
Head
,
J. Fluid Mech.
38
,
181
(
1969
).
4.
A.
Talamelli
,
F.
Persiani
,
J. H. M.
Fransson
,
P. H.
Alfredsson
,
A. V.
Johansson
,
H. M.
Nagib
,
J. D.
Rüedi
,
K. R.
Sreenivasan
, and
P. A.
Monkewitz
,
Fluid Dyn. Res.
41
,
021407
(
2009
).
5.
X.
Wu
and
P.
Moin
,
J. Fluid Mech.
608
,
81
(
2008
).
6.
J.
Nikuradse
,
Band 3 von Beil.
zu
Forschung auf d. Gebiet d. Ingenieurwesens
,”
VDI Forschungsh., Band
356
,
1
36
(
1932
).
7.
M. A.
Shockling
,
J. J.
Allen
, and
A. J.
Smits
,
J. Fluid Mech.
564
,
267
(
2006
).
8.
R.
Loehrke
and
H.
Nagib
,
J. Fluids Eng.
98
,
342
(
1976
).
9.
J.
Groth
and
A.
Johansson
,
J. Fluid Mech.
197
,
139
(
1988
).
10.
J. H.
Bell
and
R. D.
Mehta
,
AIAA J.
27
,
372
(
1989
).
11.
A. K. M. F.
Hussain
and
Y.
Ramjee
,
J. Fluids Eng.
,
98
(
1
),
58
68
(
1976
).
12.
T.
Morel
,
J. Fluids Eng.
97
(
2
),
225
233
(
1975
).
13.
P.
Bradshaw
and
R. C.
Pankhurst
,
Prog. Aerospace Sci.
5
,
1
(
1964
).
14.
J.
Cohen
and
N. J. B.
Ritchie
,
J. R. Aeronaut. Soc.
66
,
231
(
1962
).
15.
J.
Bhatia
,
F.
Durst
, and
J.
Jovanovic
,
J. Fluid Mech.
122
,
411
(
1982
).
16.
F.
Durst
,
E.
Zanoun
, and
M.
Pashtrapanska
,
Exp. Fluids
31
,
103
(
2001
).
17.
G.
Janke
,
Advances in Turbulence
(
Springer
,
Berlin
,
1987
).
18.
P. H.
Alfredsson
,
R.
Örlü
, and
P.
Schlatter
,
Exp. Fluids
51
,
271
(
2011
).
19.
R.
Örlü
,
J. H. M.
Fransson
, and
P. H.
Alfredsson
,
Prog. Aerospace Sci.
46
,
353
(
2010
).
20.
M.
Zagarola
, “
Mean-flow scaling of turbulent pipe flow
,” Ph.D. thesis (
Princeton University
, Princeton, NJ,
1996
).
21.
N.
Hutchins
,
T. B.
Nickels
,
I.
Marusic
, and
M. S.
Chong
,
J. Fluid Mech.
635
,
103
(
2009
).
22.
H. H.
Bruun
,
M. A.
Khan
,
H. H.
Al-Kayiem
, and
A. A.
Fardad
,
J. Phys. E: Sci. Instrum.
21
,
225
(
1988
).
23.
M.
Fischer
, “
Turbulente Wandgebundene Strömungen bei kleinen Reynoldszahlen
,” Ph.D. thesis (
Universität Erlangen-Nürnberg
,
1999
).
You do not currently have access to this content.