An improved Hilbert-Huang transform method is developed to the time-frequency analysis of non-stationary signals in tokamak plasmas. Maximal overlap discrete wavelet packet transform rather than wavelet packet transform is proposed as a preprocessor to decompose a signal into various narrow-band components. Then, a correlation coefficient based selection method is utilized to eliminate the irrelevant intrinsic mode functions obtained from empirical mode decomposition of those narrow-band components. Subsequently, a time varying vector autoregressive moving average model instead of Hilbert spectral analysis is performed to compute the Hilbert spectrum, i.e., a three-dimensional time-frequency distribution of the signal. The feasibility and effectiveness of the improved Hilbert-Huang transform method is demonstrated by analyzing a non-stationary simulated signal and actual experimental signals in fusion plasmas.

1.
A. C. A.
Figueiredo
,
M. F. F.
Nave
, and
E.-J. Contributors
,
Nucl. Fusion
44
,
L17
(
2004
).
2.
A. C. A.
Figueiredo
,
M. F. F.
Nave
, and
EFDA-JET
,
Rev. Sci. Instrum.
75
,
4268
(
2004
).
3.
A. C. A.
Figueiredo
,
M. F. F.
Nave
, and
E.-J. Contributors
,
IEEE Trans. Plasma Sci.
33
,
468
(
2005
).
4.
A. C. A.
Figueiredo
,
J. P. S.
Bizarro
, and
J. E. Contributors
,
Rev. Sci. Instrum.
77
,
10F509
(
2006
).
5.
R.
Coelho
,
D.
Alves
, and
C.
Silva
,
Rev. Sci. Instrum.
77
,
10F512
(
2006
).
6.
A. C. A.
Figueiredo
,
J. S.
Ferreira
,
R.
Coelho
, and
D.
Alves
,
Fusion Eng. Des.
83
,
354
(
2008
).
7.
P.
Varela
,
A.
Silva
,
F.
da Silva
,
S.
da Graca
,
M. E.
Manso
,
G. D.
Conway
, and
A. U. Team
,
Rev. Sci. Instrum.
81
,
10D925
(
2010
).
8.
W. L.
Zhong
,
Z. B.
Shi
,
X. L.
Zou
,
X. T.
Ding
,
X. L.
Huang
,
Y. B.
Dong
,
Z. T.
Liu
,
W. W.
Xiao
,
X. Q.
Ji
,
Z. Y.
Cui
,
Y.
Liu
,
L. W.
Yan
,
Q. W.
Yang
, and
X. R.
Duan
,
Rev. Sci. Instrum.
82
,
103508
(
2011
).
9.
L. Q.
Xu
,
L. Q.
Hu
,
K. Y.
Chen
, and
E. Z.
Li
,
Fusion Eng. Des.
88
,
2767
(
2013
).
10.
H. I.
Choi
and
W. J.
Williams
,
IEEE Trans. Acoust., Speech, Signal Process.
37
,
862
(
1989
).
11.
N. E.
Huang
,
Z.
Shen
,
S. R.
Long
,
M. L. C.
Wu
,
H. H.
Shih
,
Q. N.
Zheng
,
N. C.
Yen
,
C. C.
Tung
, and
H. H.
Liu
,
Proc. R. Soc. London, Ser. A
454
,
903
(
1998
).
12.
R.
Jha
,
D.
Raju
, and
A.
Sen
,
Phys. Plasmas
13
,
082507
(
2006
).
13.
J.
Kurzyna
,
S.
Mazouffre
,
A.
Lazurenko
,
L.
Albarede
,
G.
Bonhomme
,
K.
Makowski
,
M.
Dudeck
, and
Z.
Peradzynski
,
Phys. Plasmas
12
,
123506
(
2005
).
14.
A. M.
Kakurin
and
I. I.
Orlovsky
,
Plasma Phys. Rep.
31
,
1054
(
2005
).
15.
Z. K.
Peng
,
P. W.
Tse
, and
F. L.
Chu
,
J. Sound Vib.
286
,
187
(
2005
).
16.
Z. K.
Peng
,
P. W.
Tse
, and
F. L.
Chu
,
Mech. Syst. Signal Process.
19
,
974
(
2005
).
17.
Y. F.
Dong
,
Y. M.
Li
,
M. K.
Xiao
, and
M.
Lai
,
Soil Dyn. Earthq. Eng.
28
,
7
(
2008
).
18.
Y. F.
Dong
,
Y. M.
Li
, and
M.
Lai
,
Soil Dyn. Earthq. Eng.
30
,
133
(
2010
).
19.
R. T.
Rato
,
M. D.
Ortigueira
, and
A. G.
Batista
,
Mech. Syst. Signal Process.
22
,
1374
(
2008
).
20.
Z. H.
Wu
and
N. E.
Huang
,
Adv. Adapt. Data Anal.
1
,
1
(
2009
).
21.
Y. G.
Lei
and
M. J.
Zuo
,
Meas. Sci. Technol.
20
,
125701
(
2009
).
22.
A. T.
Walden
and
A. C.
Cristan
,
Proc. R. Soc. London, Ser. A
454
,
2243
(
1998
).
23.
O.
Bahar
and
S.
Ramezani
,
Struct. Design Tall Spec. Build.
23
,
239
(
2014
).
24.
A.
Ayenu-Prah
and
N.
Attoh-Okine
,
Adv. Adapt. Data Anal.
2
,
1
(
2010
).
25.
N. E.
Huang
,
Z.
Shen
, and
S. R.
Long
,
Annu. Rev. Fluid Mech.
31
,
417
(
1999
).
26.
E.
Tsakiroglou
and
A. T.
Walden
,
Signal Process.
82
,
1425
(
2002
).
27.
L.
Zeng
,
Z.
Gao
,
Y.
Tan
,
W. H.
Wang
,
H. Q.
Xie
,
L. F.
Xie
,
C. H.
Feng
,
J.
Liu
,
L.
Wang
,
X. Z.
Yang
,
Y. B.
Wu
,
F. C.
Zhong
, and
X.
Gao
,
Plasma Sci. Technol
13
,
420
(
2011
).
You do not currently have access to this content.