We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of 87Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de métrologie et d'essais−Systémes de référence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of −65 dB rad2 Hz−1 at 10 Hz offset frequency and a white phase noise level in the order of −120 dB rad2 Hz−1 for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.

1.
Atom Interferometry
, edited by
P. R.
Berman
(
Academic Press
,
Boston, MA
,
1997
).
2.
A.
Peters
,
K. Y.
Chung
, and
S.
Chu
,
Nature (London)
400
,
849
852
(
1999
).
3.
M.
Kasevich
and
S.
Chu
,
Phys. Rev. Lett.
67
,
181
(
1991
).
4.
A.
Louchet-Chauvet
,
T.
Farah
,
Q.
Bodart
,
A.
Clairon
,
A.
Landragin
,
S.
Merlet
, and
F.
Pereira Dos Santos
,
New J. Phys.
13
,
065025
(
2011
).
5.
Z. K.
Hu
,
B. L.
Sun
,
X. C.
Duan
,
M. K.
Zhou
,
L. L.
Chen
,
S.
Zhan
, and
J.
Luo
,
Phys. Rev. A
88
,
043610
(
2013
).
6.
S.
Merlet
,
Q.
Bodart
,
N.
Malossi
,
A.
Landragin
,
F.
Pereira Dos Santos
,
L.
Timmen
, and
O.
Gitlein
,
Metrologia
47
,
L9
L11
(
2010
).
7.
Ch.
Antoine
and
Ch. J.
Bordé
,
J. Opt. B: Quantum Semiclass. Opt.
5
,
S199
S207
(
2003
).
8.
B.
Barrett
 et al, “
Mobile and Remote Inertial Sensing with Atom Interferometers
,”
Proceedings of the Enrico Fermi International School of Physics “Enrico Fermi,” Course 188
, (
Varenna
,
2013
).
9.
Z.
Jiang
 et al,
Metrologia
49
,
666
684
(
2012
).
10.
R.
Geiger
,
V.
Ménoret
,
G.
Stern
,
N.
Zahzam
,
P.
Cheinet
,
B.
Battelier
,
A.
Villing
,
F.
Moron
,
M.
Lours
,
Y.
Bidel
,
A.
Bresson
,
A.
Landragin
, and
P.
Bouyer
,
Nature Commun.
2
,
474
(
2011
).
11.
D. N.
Aguilera
 et al,
Class. Quantum Grav.
31
,
115010
(
2014
).
12.
H. F.
Rice
and
V.
Benischek
, in
Proceedings of the IEEE Position Location and Navigation Symposium
,
2008
.
13.
Q.
Bodart
,
S.
Merlet
,
N.
Malossi
,
F.
Pereira dos Santos
,
P.
Bouyer
, and
A.
Landragin
,
Appl. Phys. Lett.
96
,
134101
(
2010
).
14.
G.
Stern
,
B.
Battelier
,
R.
Geiger
,
G.
Varoquaux
,
A.
Villing
,
F.
Moron
,
O.
Carraz
,
N.
Zahzam
,
Y.
Bidel
,
O.
Chaibi
,
F.
Pereira Dos Santos
,
A.
Bresson
,
A.
Landragin
, and
P.
Bouyer
,
Eur. Phys. J. D
53
,
353
357
(
2009
).
15.
F.
Ramirez-Martinez
,
M.
Lours
,
P.
Rosenbusch
,
F.
Reinhard
, and
J.
Reichel
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
88
(
2010
).
16.
P.
Cheinet
,
B.
Canuel
,
F.
Pereira Dos Santos
,
A.
Gauguet
,
F.
Leduc
, and
A.
Landragin
,
IEEE Trans. Instrum. Meas.
57
,
1141
(
2008
).
17.
S.
Merlet
,
J.
Le Gouët
,
Q.
Bodart
,
A.
Landragin
,
F.
Pereira Dos Santos
, and
P.
Rouchon
,
Metrologia
46
,
87
94
(
2009
).
18.
G.
Santarelli
,
A.
Clairon
,
S. N.
Lea
, and
G. M.
Tino
,
Opt. Commun.
104
(
4–6
),
339
344
(
1994
).
19.
P.
Bouyer
,
T. L.
Gustavson
,
K. G.
Haritos
, and
M. A.
Kasevich
,
Optics Letters
21
(
18
),
1502
1504
(
1996
).
20.
F.
Lienhart
,
S.
Boussen
,
O.
Carraz
,
N.
Zahzam
,
Y.
Bidel
, and
A.
Bresson
,
Appl. Phys. B
89
,
177
180
(
2007
).
21.
See http://www.photline.com/product/view/49/ for information about the characteristics of the EOM phase modulator we used.
22.
See http://www.ar-e.com/index.php for information about the custom-designed RF module we used.
23.
See http://nexyn.com/Catalog/NexynCatalog0606.pdf for information about the integrated PLLDRO we used.
24.
D.
Chambon
,
M.
Lours
,
F.
Chapelet
,
S.
Bize
,
M. E.
Tobar
,
A.
Clairon
, and
G.
Santarelli
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
729
735
(
2007
).
25.
Selection DDS is AD9959 and Raman DDS is AD9852. The latter is used in sweep mode and is overclocked. Gravity measurements require 48 bit resolution and phase continuity for the frequency chirp that compensates for the Doppler shift.4 
26.
J.
Le Gouët
,
T. E.
Mehlstäubler
,
J.
Kim
,
S.
Merlet
,
A.
Clairon
,
A.
Landragin
, and
F.
Pereira Dos Santos
,
Appl. Phys. B
92
,
133
144
(
2008
).
27.
D. W.
Allan
,
Proc. IEEE
54
,
221
230
(
1966
).
28.
G. J.
Dick
, in
Proceedings of the Nineteenth Annual Precise Time and Time Interval Applications Planning Meeting
(
U.S. Naval Observatory
,
1987
), pp.
133
147
.
You do not currently have access to this content.