The advent of microfabricated ion traps for the quantum information community has allowed research groups to build traps that incorporate an unprecedented number of trapping zones. However, as device complexity has grown, the number of digital-to-analog converter (DAC) channels needed to control these devices has grown as well, with some of the largest trap assemblies now requiring nearly one hundred DAC channels. Providing electrical connections for these channels into a vacuum chamber can be bulky and difficult to scale beyond the current numbers of trap electrodes. This paper reports on the development and testing of an in-vacuum DAC system that uses only 9 vacuum feedthrough connections to control a 78-electrode microfabricated ion trap. The system is characterized by trapping single and multiple 40Ca+ ions. The measured axial mode stability, ion heating rates, and transport fidelities for a trapped ion are comparable to systems with external (air-side) commercial DACs.

1.
D.
Kielpinski
,
C.
Monroe
, and
D. J.
Wineland
, “
Architecture for a large-scale ion-trap quantum computer
,”
Nature
417
,
709
711
(
2002
).
2.
J.
Chiaverini
,
R. B.
Blakestad
,
J.
Britton
,
J. D.
Jost
,
C.
Langer
,
D.
Leibfried
,
R.
Ozeri
, and
D. J.
Wineland
, “
Surface-electrode architecture for ion-trap quantum information processing
,”
Quantum Inf. Comput.
5
,
419
(
2005
).
3.
S.
Seidelin
,
J.
Chiaverini
,
R.
Reichle
,
J. J.
Bollinger
,
D.
Leibfried
,
J.
Britton
,
J. H.
Wesenberg
,
R. B.
Blakestad
,
R. J.
Epstein
,
D. B.
Hume
,
W. M.
Itano
,
J. D.
Jost
,
C.
Langer
,
R.
Ozeri
,
N.
Shiga
, and
D. J.
Wineland
, “
Microfabricated surface-electrode ion trap for scalable quantum information processing
,”
Phys. Rev. Lett.
96
,
253003
(
2006
).
4.
K.
Wright
,
J. M.
Amini
,
D. L.
Faircloth
,
C.
Volin
,
S. C.
Doret
,
H.
Hayden
,
C.-S.
Pai
,
D. W.
Landgren
,
D.
Denison
,
T.
Killian
,
R. E.
Slusher
, and
A. W.
Harter
, “
Reliable transport through a microfabricated X -junction surface-electrode ion trap
,”
New J. Phys.
15
,
033004
(
2013
).
5.
S. C.
Doret
,
J. M.
Amini
,
K.
Wright
,
C.
Volin
,
T.
Killian
,
A.
Ozakin
,
D.
Denison
,
H.
Hayden
,
C.-S.
Pai
,
R. E.
Slusher
, and
A. W.
Harter
, “
Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation
,”
New J. Phys.
14
,
073012
(
2012
).
6.
R. D.
Graham
,
S.-P.
Chen
,
T.
Sakrejda
,
J.
Wright
,
Z.
Zhou
, and
B. B.
Blinov
, “
A system for trapping barium ions in a microfabricated surface trap
,” preprint arXiv:1305.2224v1 (
2013
).
7.
D. T. C.
Allcock
,
T. P.
Harty
,
H. A.
Janacek
,
N. M.
Linke
,
C. J.
Ballance
,
A. M.
Steane
,
D. M.
Lucas
,
R. L.
Jarecki
 Jr.
,
S. D.
Habermehl
,
M. G.
Blain
,
D.
Stick
, and
D. L.
Moehring
, “
Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap
,”
Appl. Phys. B
107
,
913
919
(
2012
).
8.
R. B.
Blakestad
,
C.
Ospelkaus
,
A. P.
VanDevender
,
J. H.
Wesenberg
,
M. J.
Biercuk
,
D.
Leibfried
, and
D. J.
Wineland
, “
Near-ground-state transport of trapped-ion qubits through a multidimensional array
,”
Phys. Rev. A
84
,
032314
(
2011
).
9.
D. L.
Moehring
,
C.
Highstrete
,
D.
Stick
,
K. M.
Fortier
,
R.
Haltli
,
C.
Tigges
, and
M. G.
Blain
, “
Design, fabrication and experimental demonstration of junction surface ion traps
,”
New J. Phys.
13
,
075018
(
2011
).
10.
Mention of specific devices or manufacturers herein does not constitute implied or explicit endorsement by GTRI or Honeywell International.
11.
C. M.
Shappert
,
J. T.
Merrill
,
K. R.
Brown
,
J. M.
Amini
,
C.
Volin
,
S. C.
Doret
,
H.
Hayden
,
C.-S.
Pai
,
K. R.
Brown
, and
A. W.
Harter
, “
Spatially uniform single-qubit gate operations with near-field microwaves and composite pulse compensation
,”
New J. Phys.
15
,
083053
(
2013
).
12.
U.
Tanaka
,
R.
Naka
,
F.
Iwata
,
T.
Ujimaru
,
K. R.
Brown
,
I. L.
Chuang
, and
S.
Urabe
, “
Design and characterization of a planar trap
,”
J. Phys. B: At., Mol. Opt. Phys.
42
,
154006
(
2009
).
13.
S.
Murali
and
N.
Srikanth
, “
Acid decapsulation of epoxy molded ic packages with copper wire bonds
,”
IEEE Trans. Electron. Packag. Manuf.
29
,
179
183
(
2006
).
14.
H.
Häffner
,
C.
Roos
, and
R.
Blatt
, “
Quantum computing with trapped ions
,”
Phys. Rep.
469
,
155
203
(
2008
).
15.
G.
Vittorini
,
K.
Wright
,
K. R.
Brown
,
A. W.
Harter
, and
S. C.
Doret
, “
Modular cryostat for ion trapping with surface-electrode ion traps
,”
Rev. Sci. Instrum.
84
,
043112
(
2013
).
16.
P.
Ghosh
,
Ion Traps
(
Oxford University Press
,
Oxford
,
1995
).
17.
Q. A.
Turchette
,
Kielpinski
,
B. E.
King
,
D.
Leibfried
,
D. M.
Meekhof
,
C. J.
Myatt
,
M. A.
Rowe
,
C. A.
Sackett
,
C. S.
Wood
,
W. M.
Itano
,
C.
Monroe
, and
D. J.
Wineland
, “
Heating of trapped ions from the quantum ground state
,”
Phys. Rev. A
61
,
063418
(
2000
).
18.
P. B.
Antohi
,
D.
Schuster
,
G. M.
Akselrod
,
J.
Labaziewicz
,
Y.
Ge
,
Z.
Lin
,
W. S.
Bakr
, and
I. L.
Chuang
, “
Cryogenic ion trapping systems with surface-electrode traps
,”
Rev. Sci. Instrum.
80
,
013103
(
2009
).
You do not currently have access to this content.