A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ∼30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ∼98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

1.
G.
Zaccai
and
B.
Jacrot
,
Ann. Rev. Biophys. Bioeng.
12
,
139
(
1983
).
2.
G. D.
Wignall
and
F. S.
Bates
,
J. Appl. Crystallogr.
20
,
28
(
1987
).
3.
C. J.
Glinka
,
J. G.
Barker
,
B.
Hammouda
,
S.
Krueger
,
J. J.
Moyer
, and
W. J.
Orts
,
J. Appl. Crystallogr.
31
,
430
(
1998
).
4.
H.
Stuhrmann
,
J. Appl. Crystallogr.
7
,
173
(
1974
).
5.
6.
J.
Banhart
,
D.
Bellmann
, and
H.
Clemens
,
Acta Mater.
49
,
3409
(
2001
).
7.
P.
Lamparter
and
S.
Steeb
,
J. Non-Cryst. Solids
106
,
137
(
1988
).
8.
B.
Lebech
,
J.
Bernhard
, and
T.
Freltoft
,
J. Phys.: Condens. Matter
1
,
6105
(
1989
).
9.
A.
Wiedenmann
,
J. Appl. Crystallogr.
33
,
428
(
2000
).
10.
12.
M. T.
Rekveldt
,
Nucl. Instrum. Methods Phys. Res., Sect. B
114
,
366
(
1996
).
13.
G. P.
Felcher
,
S. G. E.
te Velthuis
,
J.
Major
,
H.
Dosch
,
C.
Anderson
,
K.
Habicht
, and
T.
Keller
,
Proc. SPIE
4785
,
164
(
2002
).
14.
R.
Gähler
,
R.
Golub
,
K.
Habicht
,
T.
Keller
, and
J.
Felber
,
Physica B
229
,
1
(
1996
).
15.
R.
Pynn
,
M. R.
Fitzsimmons
,
W. T.
Lee
,
P.
Stonaha
,
V. R.
Shah
,
A. L.
Washington
,
B. J.
Kirby
,
C. F.
Majkrzak
, and
B. B.
Maranville
,
Physica B
404
,
2582
(
2009
).
16.
R.
Pynn
,
W. T.
Lee
,
P.
Stonaha
,
V. R.
Shah
,
A. L.
Washington
,
B. J.
Kirby
,
C. F.
Majkrzak
, and
B. B.
Maranville
,
Rev. Sci. Instrum.
79
,
063901
(
2008
).
17.
R.
Pynn
,
M. R.
Fitzsimmons
,
W. T.
Lee
,
V. R.
Shah
,
A. L.
Washington
,
P.
Stonaha
, and
K.
Littrell
,
J. Appl. Crystallogr.
41
,
897
(
2008
).
18.
W. H.
Kraan
,
J.
Plomp
,
M. T.
Rekveldt
,
C. F.
de Vroege
, and
S. V.
Grigoriev
,
Physica B
385–386
,
1155
(
2006
).
19.
M. T.
Rekveldt
,
C. P.
Duif
,
W. H.
Kraan
,
J.
Plomp
, and
W. G.
Bouwman
,
Rev. Sci. Instrum.
79
,
015113
(
2008
).
20.
J.
Plomp
, “
Spin-echo development for a time-of-flight neutron reflectometer
,” Ph.D. thesis,
Delft University of Technology
, Netherlands,
2009
.
21.
P.
Stonaha
,
J.
Hendrie
,
W. T.
Lee
, and
R.
Pynn
,
Rev. Sci. Instrum.
84
,
105113
(
2013
).
22.
T.
Keller
,
R.
Golub
,
F.
Mezei
, and
R.
Gähler
,
Physica B
234–236
,
1126
(
1997
).
23.
S. R.
Parnell
,
A. L.
Washington
,
H.
Kaiser
,
F.
Li
,
T.
Wang
,
W. A.
Hamilton
,
D. V.
Baxter
, and
R.
Pynn
,
Nucl. Instrum. Methods Phys. Res., Sect. A
722
,
20
(
2013
).
24.
S. R.
Parnell
,
H.
Kaiser
,
A. L.
Washington
,
F.
Li
,
T.
Wang
,
D. V.
Baxter
, and
R.
Pynn
,
Phys. Procedia
42
,
125
(
2013
).
25.
C. F.
Majkrzak
,
K. V.
O’Donovan
, and
N. F.
Berk
,
Neutron Scattering from Magnetic Materials
, edited by
T.
Chatterji
(
Elsevier Science
,
Amsterdam
,
2006
).
27.
See supplemental material at http://dx.doi.org/10.1063/1.4875984 for further details about the simulations and constructions of the Wollaston prism.
28.
P. A.
Seeger
and
L. L.
Daemen
,
Nucl. Instrum. Methods Phys. Res., Sect. A
457
,
338
(
2001
).
29.
Certain commercial equipment, suppliers or software are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.
30.
D. V.
Baxter
,
J. M.
Cameron
,
V. P.
Derenchuk
,
C. M.
Lavelle
,
M. B.
Leuschner
,
M. A.
Lone
,
H. O.
Meyer
,
T.
Rinckel
, and
W. M.
Snow
,
Nucl. Instrum. Methods Phys. Res., Sect. B
241
,
209
(
2005
).
31.
C. M.
Lavelle
,
D. V.
Baxter
,
A.
Bogdanov
,
V. P.
Derenchuk
,
H.
Kaiser
,
M. B.
Leuschner
,
M. A.
Lone
,
W.
Lozowski
,
H.
Nann
,
B. v.
Przewoski
,
N.
Remmes
,
T.
Rinckel
,
Y.
Shin
,
W. M.
Snow
, and
P. E.
Sokol
,
Nucl. Instrum. Methods Phys. Res., Sect. A
587
,
324
(
2008
).
32.
C.
Böhmer
,
G.
Brandstätter
, and
H. W.
Weber
,
Supercond. Sci. Technol.
10
,
A1
(
1997
).
33.
P.
Oxley
,
IEEE Trans. Magn.
45
,
3274
(
2009
).
34.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York, NY
,
1999
).
35.
S.
Kawabata
,
Nucl. Instrum. Methods Phys. Res., Sect. A
329
,
1
(
1993
).
36.
E.
Babcock
,
A.
Petoukhov
,
J.
Chastagnier
,
D.
Jullien
,
E.
Lelievre-Berna
,
K. H.
Andersen
,
R.
Georgii
,
S.
Masalovich
,
S.
Boag
,
C. D.
Frost
, and
S. R.
Parnell
,
Physica B
397
,
172
(
2007
).
37.
J. A.
Dura
,
D. J.
Pierce
,
C. F.
Majkrzak
,
N. C.
Maliszewskyj
,
D. J.
McGillivray
,
M.
Lösche
,
K. V.
O’Donovan
,
M.
Mihailescu
,
U.
Perez-Salas
,
D. L.
Worcester
, and
S. H.
White
,
Rev. Sci. Instrum.
77
,
074301
(
2006
).
38.
F.
Pfeiffer
,
C.
Grünzweig
,
O.
Bunk
,
G.
Frei
,
E.
Lehmann
, and
C.
David
,
Phys. Rev. Lett.
96
,
215505
(
2006
).

Supplementary Material

You do not currently have access to this content.