Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without breaking vacuum, and convenient visual access to the sample and tip inside a superconducting magnet cryostat. A sample/tip handling system is optimized for both the molecular beam epitaxy growth system and the scanning tunneling microscope system. The sample/tip handing system enables in situ STM studies on epitaxially grown samples, and tip exchange in the superconducting magnet cryostat. The hybrid molecular beam epitaxy and low temperature scanning tunneling microscopy system is capable of growing semiconductor-based hetero-structures with controlled accuracy down to a single atomic-layer and imaging them down to atomic resolution.
Skip Nav Destination
Article navigation
April 2014
Research Article|
April 08 2014
Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy
Wenzhi Lin;
Wenzhi Lin
a)
Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute,
Ohio University
, Athens, Ohio 45701, USA
Search for other works by this author on:
Andrew Foley;
Andrew Foley
Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute,
Ohio University
, Athens, Ohio 45701, USA
Search for other works by this author on:
Khan Alam;
Khan Alam
Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute,
Ohio University
, Athens, Ohio 45701, USA
Search for other works by this author on:
Kangkang Wang;
Kangkang Wang
Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute,
Ohio University
, Athens, Ohio 45701, USA
Search for other works by this author on:
Yinghao Liu;
Yinghao Liu
Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute,
Ohio University
, Athens, Ohio 45701, USA
Search for other works by this author on:
Tianjiao Chen;
Tianjiao Chen
Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute,
Ohio University
, Athens, Ohio 45701, USA
Search for other works by this author on:
Jeongihm Pak;
Jeongihm Pak
Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute,
Ohio University
, Athens, Ohio 45701, USA
Search for other works by this author on:
Arthur R. Smith
Arthur R. Smith
b)
Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute,
Ohio University
, Athens, Ohio 45701, USA
Search for other works by this author on:
a)
Present address: Oak Ridge National Laboratory, One Bethel Valley Road, P.O. Box 2008, MS-6487, Oak Ridge, Tennessee 37831, USA.
b)
Author to whom correspondence should be addressed. Electronic mail: smitha2@ohio.edu.
Rev. Sci. Instrum. 85, 043702 (2014)
Article history
Received:
February 10 2014
Accepted:
March 20 2014
Citation
Wenzhi Lin, Andrew Foley, Khan Alam, Kangkang Wang, Yinghao Liu, Tianjiao Chen, Jeongihm Pak, Arthur R. Smith; Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy. Rev. Sci. Instrum. 1 April 2014; 85 (4): 043702. https://doi.org/10.1063/1.4870276
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Overview of the early campaign diagnostics for the SPARC tokamak (invited)
M. L. Reinke, I. Abramovic, et al.
An instrumentation guide to measuring thermal conductivity using frequency domain thermoreflectance (FDTR)
Dylan J. Kirsch, Joshua Martin, et al.
Rydberg electromagnetically induced transparency based laser lock to Zeeman sublevels with 0.6 GHz scanning range
Alexey Vylegzhanin, Síle Nic Chormaic, et al.