A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placed directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
New York,
2005
).
2.
F. F.
Chen
and
J. P.
Chang
,
Lecture Notes on Principles of Plasma Processing
(
Plenum/Kluwer Publishers
,
2002
).
3.
D.
Gahan
,
S.
Daniels
,
C.
Hayden
,
P.
Scullin
,
D.
O’Sullivan
,
Y. T.
Pei
, and
M. B.
Hopkins
,
Plasma Sources Sci. Technol.
21
,
024004
(
2012
).
4.
See www.oxfordinstruments.com for Plasma Etch & Deposition Systems.
5.
S.
Kechkar
,
P.
Swift
,
J.
Conway
,
M.
Turner
, and
S.
Daniels
,
Plasma Sources Sci. Technol.
22
,
045013
(
2013
).
6.
D.
Gahan
,
S.
Daniels
,
C.
Hayden
,
D.
O’Sullivan
, and
M. B.
Hopkins
,
Plasma Sources Sci. Technol.
21
,
015002
(
2012
).
7.
A. D.
Kuypers
and
H. J.
Hopman
,
J. Appl. Phys.
67
,
1229
(
1990
).
8.
S. G.
Ingram
and
N. S. J.
Braithwaite
,
J. Appl. Phys.
68
,
5519
(
1990
).
9.
K.
Kohler
,
J. W.
Coburn
,
D. E.
Horne
,
E.
Kay
, and
J. H.
Keller
,
J. Appl. Phys.
57
,
59
(
1985
).
10.
S. G.
Ingram
and
N. S. J.
Braithwaite
,
J. Phys. D
21
,
1496
(
1988
).
11.
A. D.
Kuypers
and
H. J.
Hopman
,
J. Appl. Phys.
63
,
1894
(
1988
).
12.
D.
Gahan
,
B.
Dolinaj
, and
M. B.
Hopkins
,
Rev. Sci. Instrum.
79
,
033502
(
2008
).
13.
J. Y.
Kim
,
S. J.
Oh
,
Y. C.
Kim
,
I. J.
Choi
, and
C. W.
Chung
,
Meas. Sci. Technol.
24
,
095102
(
2013
).
14.
M.
Sarfaty
,
M.
Harper
, and
N.
Hershkowitz
,
Rev. Sci. Instrum.
69
(
9
),
3176
(
1998
).
15.
D. A.
White
,
D.
Boning
,
S. W.
Butler
, and
G. G.
Barna
,
IEEE Trans. Semicond. Manufac.
10
(
1
),
52
61
(
1997
).
16.
C.
Hayden
,
D.
Gahan
, and
M. B.
Hopkins
,
Plasma Sources Sci. Technol.
18
,
025018
(
2009
).
17.
K.
Denieffe
,
C. M. O.
Mahony
,
P. D.
Maguire
,
D.
Gahan
, and
M. B.
Hopkins
,
J. Phys. D: Appl. Phys.
44
,
075205
(
2011
).
18.
D.
Gahan
,
B.
Dolinaj
, and
M. B.
Hopkins
,
Plasma Sources Sci. Technol.
17
,
035026
(
2008
).
19.
S.
Fang
and
J. P.
McVittie
,
J. Appl. Phys.
72
,
4865
(
1992
).
20.
I.
Denysenko
,
M. Y.
Yu
, and
S.
Xu
,
J. Phys. D: Appl. Phys.
38
,
403
(
2005
).
21.
S. K.
Ahn
and
H. Y.
Chang
,
Appl. Phys. Lett.
93
(
3
),
031506
(
2008
).
You do not currently have access to this content.