The microfluidic probe (MFP) is a non-contact, scanning microfluidic technology for local (bio)chemical processing of surfaces based on hydrodynamically confining nanoliter volumes of liquids over tens of micrometers. We present here a compact MFP (cMFP) that can be used on a standard inverted microscope and assist in the local processing of tissue sections and biological specimens. The cMFP has a footprint of 175 × 100 × 140 mm3 and can scan an area of 45 × 45 mm2 on a surface with an accuracy of ±15 μm. The cMFP is compatible with standard surfaces used in life science laboratories such as microscope slides and Petri dishes. For ease of use, we developed self-aligned mounted MFP heads with standardized “chip-to-world” and “chip-to-platform” interfaces. Switching the processing liquid in the flow confinement is performed within 90 s using a selector valve with a dead-volume of approximately 5 μl. We further implemented height-compensation that allows a cMFP head to follow non-planar surfaces common in tissue and cellular ensembles. This was shown by patterning different macroscopic copper-coated topographies with height differences up to 750 μm. To illustrate the applicability to tissue processing, 5 μm thick M000921 BRAF V600E+ melanoma cell blocks were stained with hematoxylin to create contours, lines, spots, gradients of the chemicals, and multiple spots over larger areas. The local staining was performed in an interactive manner using a joystick and a scripting module. The compactness, user-friendliness, and functionality of the cMFP will enable it to be adapted as a standard tool in research, development and diagnostic laboratories, particularly for the interaction with tissues and cells.

1.
G. V.
Kaigala
,
R. D.
Lovchik
,
U.
Drechsler
, and
E.
Delamarche
,
Langmuir
27
,
5686
(
2011
).
2.
G. V.
Kaigala
,
R. D.
Lovchik
, and
E.
Delamarche
,
Angew. Chem., Int. Ed.
51
,
11224
(
2012
).
3.
R. D.
Piner
,
J.
Zhu
,
X.
Feng
,
S.
Hong
, and
C. A.
Mirkin
,
Science
283
,
661
(
1999
).
4.
D. S.
Ginger
,
H.
Zhang
, and
C. A.
Mirkin
,
Angew. Chem., Int. Ed.
43
,
30
(
2004
).
5.
L.
Ying
,
Biochem. Soc. Trans.
37
,
702
(
2009
).
6.
S.
Hardt
and
T.
Hahn
,
Lab Chip
12
,
434
(
2012
).
7.
H.
Tavana
,
A.
Jovic
,
B.
Mosadegh
,
Q. Y.
Lee
,
X.
Liu
,
K. E.
Luker
,
G. D.
Luker
,
S. J.
Weiss
, and
S.
Takayama
,
Nat. Mater.
8
,
736
(
2009
).
8.
H.
Tavana
,
B.
Mosadegh
, and
S.
Takayama
,
Adv. Mater.
22
,
2628
(
2010
).
9.
H.
Tavana
,
B.
Mosadegh
,
P.
Zamankhan
,
J. B.
Grotberg
, and
S.
Takayama
,
Biotechnol. Bioeng.
108
,
2509
(
2011
).
10.
A.
Ainla
,
G.
Jeffries
, and
A.
Jesorka
,
Micromachines
3
,
442
(
2012
).
11.
D.
Juncker
,
H.
Schmid
, and
E.
Delamarche
,
Nat. Mater.
4
,
622
(
2005
).
12.
M. A.
Qasaimeh
,
T.
Gervais
, and
D.
Juncker
,
Nat. Commun.
2
,
464
(
2011
).
13.
R. D.
Lovchik
,
U.
Drechsler
, and
E.
Delamarche
,
J. Micromech. Microeng.
19
,
115006
(
2009
).
14.
M. A.
Qasaimeh
,
S. G.
Ricoult
, and
D.
Juncker
,
Lab Chip
13
,
40
(
2013
).
15.
A.
Queval
,
N. R.
Ghattamaneni
,
C. M.
Perrault
,
R.
Gill
,
M.
Mirzaei
,
R. A.
McKinney
, and
D.
Juncker
,
Lab Chip
10
,
326
(
2010
).
16.
R. D.
Lovchik
,
G. V.
Kaigala
,
M.
Georgiadis
, and
E.
Delamarche
,
Lab Chip
12
,
1040
(
2012
).
17.
H.
Shiku
,
T.
Yamakawa
,
Y.
Nashimoto
,
Y.
Takahashi
,
Y.
Torisawa
,
T.
Yasukawa
,
T.
Ito-Sasaki
,
M.
Yokoo
,
H.
Abe
,
H.
Kambara
, and
T.
Matsue
,
Anal. Biochem.
385
,
138
(
2009
).
18.
C. M.
Perrault
,
M. A.
Qasaimeh
,
T.
Brastaviceanu
,
K.
Anderson
,
Y.
Kabakibo
, and
D.
Juncker
,
Rev. Sci. Instrum.
81
,
115107
(
2010
).
19.
A.
Ainla
,
G. D. M.
Jeffries
,
R.
Brune
,
O.
Orwar
, and
A.
Jesorka
,
Lab Chip
12
,
1255
(
2012
).
20.
A.
Ainla
,
E. T.
Jansson
,
N.
Stepanyants
,
O.
Orwar
, and
A.
Jesorka
,
Anal. Chem.
82
,
4529
(
2010
).
21.
J. N.
Lee
,
C.
Park
, and
G. M.
Whitesides
,
Anal. Chem.
75
,
6544
(
2003
).
22.
K. V.
Christ
and
K. T.
Turner
,
Lab Chip
11
,
1491
(
2011
).
23.
G.
Binnig
and
H.
Rohrer
,
Angew. Chem., Int. Ed. Engl.
26
,
606
(
1987
).
24.
A.
Bruckbauer
,
L.
Ying
,
A. M.
Rothery
,
D.
Zhou
,
A. I.
Shevchuk
,
C.
Abell
,
Y. E.
Korchev
, and
D.
Klenerman
,
J. Am. Chem. Soc.
124
,
8810
(
2002
).
25.
A.
Bruckbauer
,
P.
James
,
D.
Zhou
,
J. W.
Yoon
,
D.
Excell
,
Y.
Korchev
,
R.
Jones
, and
D.
Klenerman
,
Biophys. J.
93
,
3120
(
2007
).
26.
P.
Novak
,
C.
Li
,
A. I.
Shevchuk
,
R.
Stepanyan
,
M.
Caldwell
,
S.
Hughes
,
T. G.
Smart
,
J.
Gorelik
,
V. P.
Ostanin
,
M. J.
Lab
,
G. W. J.
Moss
,
G. I.
Frolenkov
,
D.
Klenerman
, and
Y. E.
Korchev
,
Nat. Methods
6
,
279
(
2009
).
27.
R. D.
Lovchik
,
G. V.
Kaigala
, and
E.
Delamarche
, in
Proceedings of the MicroTAS, Okinawa, 2012
(
Chemical and Biological Microsystems Society
,
2012
), pp.
1444
1446
.
28.
M. S.
Kim
,
T.
Kim
,
S.-Y.
Kong
,
S.
Kwon
,
C. Y.
Bae
,
J.
Choi
,
C. H.
Kim
,
E. S.
Lee
, and
J.-K.
Park
,
PLoS ONE
5
,
e10441
(
2010
).
29.
A. J.
Blake
,
T. M.
Pearce
,
N. S.
Rao
,
S. M.
Johnson
, and
J. C.
Williams
,
Lab Chip
7
,
842
(
2007
).
30.
G. M.
Whitesides
,
Nature (London)
442
,
368
(
2006
).
31.
S.
Haeberle
and
R.
Zengerle
,
Lab Chip
7
,
1094
(
2007
).
32.
J.
Liu
,
C.
Hansen
, and
S. R.
Quake
,
Anal. Chem.
75
,
4718
(
2003
).
33.
D. A.
Routenberg
and
M. A.
Reed
,
Lab Chip
10
,
123
(
2010
).
34.
M.
Abdelgawad
and
A. R.
Wheeler
,
Adv. Mater.
19
,
133
(
2007
).
35.
Surface Analyzer™ Goniometer, Plasmatreat, see http://www.plasmatreat.com/surface-determination/contact-angle-measurement-goniometer.html (last viewed: 2 December
2013
).
36.
B.
Gasser
,
A.
Menck
,
H.
Brune
, and
K.
Kern
,
Rev. Sci. Instrum.
67
,
1925
(
1996
).
37.
P. J.
Potts
, in
Portable X-Ray Fluorescence Spectrometry
, edited by
P. J.
Potts
and
M.
West
(
Royal Society of Chemistry
,
Cambridge
,
2008
), pp.
1
12
.
You do not currently have access to this content.