We present a method for using liquid-crystal variable retarders (LCVR’s) with continually varying voltage to measure the Stokes vector of a light beam. The LCVR's are usually employed with fixed retardance values due to the nonlinear voltage-retardance behavior that they show. The nonlinear voltage-retardance relationship is first measured and then a linear fit of the known retardance terms to the detected signal is performed. We use known waveplates (half-wave and quarter-wave) as devices to provide controlled polarization states to the Stokes polarimeter and we use the measured Stokes parameters as functions of the orientation of the axes of the waveplates as an indication of the quality of the polarimeter. Results are compared to a Fourier analysis method that does not take into account the nonlinear voltage-retardance relationship and also to a Fourier analysis method that uses experimental voltage values to give a linear retardance function with time. Also, we present results of simulations for comparison.

1.
D.
Goldstein
,
Polarized Light
, 2nd ed. (
Marcel Dekker, Inc.
,
New York
,
2003
).
2.
G.
Martínez-Ponce
,
C.
Solano
, and
C.
Pérez-Barrios
, “
Hybrid complete Mueller polarimeter based on phase modulators
,”
Opt. Lasers Eng.
49
,
723
728
(
2011
).
3.
P.
Terrier
,
J. M.
Charbois
, and
V.
Devlaminck
, “
Fast-axis orientation dependence on driving voltage for a Stokes polarimeter based on concrete liquid-crystal variable retarders
,”
Appl. Opt.
49
(
22
),
4278
4283
(
2010
).
4.
J. M.
López-Téllez
and
N. C.
Bruce
, “
The effect of alignment errors in polarimetry of light using liquid-crystal variable retarders
,”
Proc. SPIE
8011
,
801107
(
2011
).
5.
J. M.
López-Téllez
and
N. C.
Bruce
, “
Experimental method to characterize a liquid-crystal variable retarder and its application in a Stokes polarimeter
,”
Proc. SPIE
8785
,
87852J
(
2013
).
6.
C. A.
Velázquez Olivera
,
J. M.
López Tellez
, and
N. C.
Bruce
, “
Stokes polarimetry using liquid-crystal variable retarders and nonlinear voltage-retardance function
,”
Proc. SPIE
8011
,
80110C
(
2011
).
7.
T.
Kihara
, “
Measurement of Stokes parameters by quarter-wave plate and polarizer
,”
Appl. Mech. Mater.
3–4
,
235
242
(
2005
).
8.
R. M. A.
Azzam
, “
Oscillating-analyzer ellipsometer
,”
Rev. Sci. Instrum.
47
(
5
),
624
628
(
1976
).
9.
R. M. A.
Azzam
, “
Photopolarimeter using two modulated optical rotators
,”
Opt. Lett.
1
(
5
),
181
183
(
1977
).
10.
D. H.
Goldstein
, “
Mueller matrix dual-rotating-retarder polarimeter
,”
App. Opt.
31
,
6676
6683
(
1992
).
11.
O. G.
Rodríguez-Herrera
,
D.
Lara
, and
C.
Dainty
, “
Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields
,”
Opt. Express
18
(
6
),
5609
5628
(
2010
).
12.
D.
Lara
and
C.
Dainty
, “
Axially resolved complete Mueller matrix confocal microscopy
,”
App. Opt.
45
(
9
),
1917
1930
(
2006
).
13.
N. C.
Bruce
,
A. D.
Báez
,
T. S.
Sánchez
,
X. T.
Díaz
,
A. N.
Jiménez
, and
R. N.
Sandoval
, “
Design of a scanning polarimetric scatterometer for rough surface scattering measurements
,”
J. Phys.: Conf. Ser.
274
,
012135
(
2011
).
14.
See http://www.meadowlark.com for details on the fabrication and operation of the Liquid Crystal Variable Retarders.
15.
R. L.
Heredero
,
N.
Uribe-Patarroyo
,
T.
Belenguer
,
G.
Ramos
,
A.
Sánchez
,
M.
Reina
,
V.
Martínez Pillet
, and
A.
Álvarez-Herrero
, “
Liquid-crystal variable retarders for aerospace polarimetry applications
,”
App. Opt.
46
,
689
698
(
2007
).
You do not currently have access to this content.