Innovations in international health require the use of state-of-the-art technology to enable clinical chemistry for diagnostics of bodily fluids. We propose the implementation of a portable and affordable lock-in amplifier-based instrument that employs digital technology to perform biochemical diagnostics on blood, urine, and other fluids. The digital instrument is composed of light source and optoelectronic sensor, lock-in detection electronics, microcontroller unit, and user interface components working with either power supply or batteries. The instrument performs lock-in detection provided that three conditions are met. First, the optoelectronic signal of interest needs be encoded in the envelope of an amplitude-modulated waveform. Second, the reference signal required in the demodulation channel has to be frequency and phase locked with respect to the optoelectronic carrier signal. Third, the reference signal should be conditioned appropriately. We present three approaches to condition the signal appropriately: high-pass filtering the reference signal, precise offset tuning the reference level by low-pass filtering, and by using a voltage divider network. We assess the performance of the lock-in instrument by comparing it to a benchmark device and by determining protein concentration with single-color absorption measurements. We validate the concentration values obtained with the proposed instrument using chemical concentration measurements. Finally, we demonstrate that accurate retrieval of phase information can be achieved by using the same instrument.

1.
A.
Caldwell
,
A.
Young
,
J.
Gomez-Marquez
, and
K.
Olson
,
IEEE Pulse
2
,
63
(
2011
).
2.
J.
Gomez-Marquez
, “
Design For Hack
” in Medicine [Kit Review], 2012, see http://makezine.com/2012/04/03/design-for-hack-in-medicine/.
3.
The Economist, “More than just digital quilting,’’ see http://www.economist.com/node/21540392.
4.
P.
Vacas-Jacques
,
M.
Williams
,
J.
Jimenez-Lozano
,
A.
Fahlman
,
M.
Moore
,
P.
Tyack
,
W.
Zapol
,
R.
Anderson
, and
W.
Franco
,
Lasers Surg. Med.
44
(
S24
),
30
(
2012
).
5.
E.
Gutierrez-Herrera
,
P.
Vacas-Jacques
,
R.
Anderson
,
W.
Zapol
, and
W.
Franco
,
Proc. SPIE
8592
,
859201
(
2013
).
6.
A.
Dorrington
and
R.
Kuennemeyer
, in
Proceedings of the 1st IEEE International Workshop on Electronic Design, Test and Applications
(
IEEE
,
2002
), p.
486
.
7.
L.
Barragán
,
J.
Artigas
,
R.
Alonso
, and
F.
Villuendas
,
Rev. Sci. Instrum.
72
,
247
(
2001
).
8.
R.
Alonso
,
F.
Villuendas
,
J.
Borja
,
L.
Barragán
, and
I.
Salinas
,
Meas. Sci. Technol.
14
,
551
(
2003
).
9.
M.
Sonnaillona
and
F.
Bonettob
,
Rev. Sci. Instrum.
76
,
024703
(
2005
).
10.
MC1496
, MC1496B datasheet rev. 10, ON Semiconductor, Denver, CO,
2006
.
11.
S.
Sengupta
,
J.
Farnham
, and
J.
Whitten
,
J. Chem. Edu.
82
,
1399
(
2005
).
12.
AD630 datasheet rev. E, Analog Devices, Norwood, MA,
2004
.
13.
8-bit Atmel microcontroller with 64K/128K/256K bytes in-system programmable flash ATmega640/V ATmega1280/V ATmega1281/V ATmega2560/V ATmega2561/V, Atmel Corporation, San Jose, CA,
2012
.
14.
American Diabetes Association
,
Diab. Care
36
,
S11
(
2013
).
15.
Procedure 0250: Total Protein LiquiColor Test, Stanbio Laboratory, Boerne, TX.
16.
Procedure 1070: Glucose LiquiColor Test, Stanbio Laboratory, Boerne, TX.
17.
B.
Chance
,
M.
Cope
,
E.
Gratton
,
N.
Ramanujam
, and
B.
Tromberg
,
Rev. Sci. Instrum.
69
,
3457
(
1998
).
You do not currently have access to this content.