Thermal noise spectra of nanomechanical resonators are used widely to characterize their physical properties. These spectra typically exhibit a Lorentzian response, with additional white noise due to extraneous processes. Least-squares fits of these measurements enable extraction of key parameters of the resonator, including its resonant frequency, quality factor, and stiffness. Here, we present general formulas for the uncertainties in these fit parameters due to sampling noise inherent in all thermal noise spectra. Good agreement with Monte Carlo simulation of synthetic data and measurements of an Atomic Force Microscope (AFM) cantilever is demonstrated. These formulas enable robust interpretation of thermal noise spectra measurements commonly performed in the AFM and adaptive control of fitting procedures with specified tolerances.

1.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
2.
J. P.
Cleveland
,
S.
Manne
,
D.
Bocek
, and
P. K.
Hansma
,
Rev. Sci. Instrum.
64
,
403
(
1993
).
3.
J. L.
Hutter
and
J.
Bechhoefer
,
Rev. Sci. Instrum.
64
,
1868
(
1993
).
4.
J. E.
Sader
,
J. W. M.
Chon
, and
P.
Mulvaney
,
Rev. Sci. Instrum.
70
,
3967
(
1999
).
6.
N. V.
Lavrik
,
M. J.
Sepaniak
, and
P. G.
Datskos
,
Rev. Sci. Instrum.
75
,
2229
(
2004
).
7.
K. L.
Ekinci
and
M. L.
Roukes
,
Rev. Sci. Instrum.
76
,
061101
(
2005
).
8.
T.
Franosch
,
M.
Grimm
,
M.
Belushkin
,
F. M.
Mor
,
G.
Foffi
,
L.
Forro
, and
S.
Jeney
,
Nature (London)
478
,
85
(
2011
).
9.
A.
Jannasch
,
M.
Mahamdeh
, and
E.
Schaeffer
,
Phys. Rev. Lett.
107
,
228301
(
2011
).
10.
J.
te Riet
,
A. J.
Katan
,
C.
Rankl
,
S. W.
Stahl
,
A. M.
van Buul
,
I. Y.
Phang
,
A.
Gomez-Casado
,
P.
Schön
,
J. W.
Gerritsen
,
A.
Cambi
 et al,
Ultramicroscopy
111
,
1659
(
2011
).
11.
J. E.
Sader
,
J. A.
Sanelli
,
B. D.
Adamson
,
J. P.
Monty
,
X.
Wei
,
S. A.
Crawford
,
J. R.
Friend
,
I.
Marusic
,
P.
Mulvaney
, and
E. J.
Bieske
,
Rev. Sci. Instrum.
83
,
103705
(
2012
).
12.
M. H.
Matheny
,
L. G.
Villanueva
,
R. B.
Karabalin
,
J. E.
Sader
, and
M. L.
Roukes
,
Nano Lett.
13
,
1622
(
2013
).
13.
E. C.
Bullard
,
J.
Li
,
C. R.
Lilley
,
P.
Mulvaney
,
M. L.
Roukes
, and
J. E.
Sader
,
Phys. Rev. Lett.
112
,
015501
(
2014
).
14.
J. E.
Sader
,
J.
Sanelli
,
B. D.
Hughes
,
J. P.
Monty
, and
E. J.
Bieske
,
Rev. Sci. Instrum.
82
,
095104
(
2011
).
15.
J. W. M.
Chon
,
P.
Mulvaney
, and
J. E.
Sader
,
J. Appl. Phys.
87
,
3978
(
2000
).
16.
A. V.
Oppenheim
,
Discrete-Time Signal Processing
(
Prentice-Hall
,
Upper Saddle River, NJ
,
1999
).
17.
J. E.
Sader
,
B. D.
Hughes
,
J. A.
Sanelli
, and
E. J.
Bieske
,
Rev. Sci. Instrum.
83
,
055106
(
2012
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4864086 for Mathematica notebook containing exact formulas for arbitrary β and Q0.

Supplementary Material

You do not currently have access to this content.