We present an analytical formulation of the bipod flexure for mounting the 1-m primary mirror in a space telescope. Compliance and stiffness matrices of the bipod flexure are derived to estimate theoretical performance and to make initial design guidelines. We use finite element analysis to optimize the bipod design satisfying the application requirements. Experimental verification is achieved by vibration test with a dummy mirror system.

1.
P. R.
Yoder
 Jr.
, “
Mounting large, horizontal-axis mirrors
,” in
Opto-Mechanical Systems Design
(
SPIE Press
,
2006
), pp.
481
502
.
2.
Y. K.
Yong
,
T.-F.
Lu
, and
D. C.
Handley
, “
Review of circular flexure hinge design equations and derivation of empirical formulations
,”
Precis. Eng.
32
,
63
70
(
2008
).
3.
Y.
Tian
,
B.
Shirinzadeh
,
D.
Zhang
, and
Y.
Zhong
, “
Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis
,”
Precis. Eng.
34
,
92
100
(
2010
).
4.
N.
Lobontiu
,
J. S. N.
Paine
,
E.
Garcia
, and
M.
Goldfarb
, “
Corner-filleted flexure hinges
,”
J. Mech. Des.
123
,
346
352
(
2001
).
5.
L.
Furey
,
T.
Dubos
,
D.
Hansen
, and
J.
Samuels-Schwartz
, “
Hubble space telescope primary-mirror characterization by measurement of the reflective null corrector
,”
Appl. Opt.
32
,
1703
1714
(
1993
).
6.
T.
Pamplona
,
Ch.
Rossin
,
L.
Martin
,
G.
Moreaux
,
E.
Prieto
,
P.
Laurent
,
E.
Grassi
,
J-L.
Boit
,
L.
Castinel
,
J.
Garcia
, and
B.
Milliard
, “
Three bipods slicer prototype: Tests and finite element calculations
,”
Proc. SPIE
7018
,
701828
(
2008
).
7.
E. T.
Kvamme
and
M. T.
Sullivan
, “
A small low-stress stable 3-DOF mirror mount with one arc-second tip/tilt resolution
,”
Proc. SPIE
5528
,
264
271
(
2004
).
8.
H.
Kihm
,
H.-S.
Yang
,
I. K.
Moon
,
J.-H.
Yeon
,
S.-H.
Lee
, and
Y.-W.
Lee
, “
Adjustable bipod flexures for mounting mirrors in a space telescope
,”
Appl. Opt.
51
,
7776
7783
(
2012
).
9.
Y.
Wu
and
Z.
Zhou
, “
Design calculations for flexure hinges
,”
Rev. Sci. Instrum.
73
,
3101
3106
(
2002
).
10.
Y. M.
Tseytlin
, “
Notch flexure hinges: An effective theory
,”
Rev. Sci. Instrum.
73
,
3363
3368
(
2002
).
11.
K.-B.
Choi
and
C. S.
Han
, “
Optimal design of a compliant mechanism with circular notch flexure hinges
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
221
,
385
392
(
2007
).
12.
W. O.
Schotborgh
,
F. G. M.
Kokkeler
,
H.
Tragter
, and
F. J. A. M.
van Houten
, “
Dimensionless design graphs for flexure elements and a comparison between three flexure elements
,”
Precis. Eng.
29
,
41
47
(
2005
).
13.
H.-J.
Su
,
H.
Shi
, and
J.
Yu
, “
A symbolic formulation for analytical compliance analysis and synthesis of flexure mechanism
,”
J. Mech. Des.
134
,
051009
(
2012
).
14.
H.
Kihm
and
H.-S.
Yang
, “
Design optimization of a 1-m lightweight mirror for a space telescope
,”
Opt. Eng.
52
,
091806
(
2013
).
15.
H.
Kihm
,
H.-S.
Yang
, and
Y.-W.
Lee
, “
Optomechanical analysis of a 1-m light-weight mirror system
,”
J. Korean Phys. Soc.
62
,
1239
1246
(
2013
).
16.
P. R.
Yoder
 Jr.
,
Mounting Optics in Optical Instruments
, 2nd ed. (
SPIE Press
,
2008
).
You do not currently have access to this content.