Single crystal Diamond Detectors (SDD) are being increasingly exploited for neutron diagnostics in high power fusion devices, given their significant radiation hardness and high energy resolution capabilities. The geometrical efficiency of SDDs is limited by the size of commercially available crystals, which is often smaller than the dimension of neutron beams along collimated lines of sight in tokamak devices. In this work, we present the design and fabrication of a 14 MeV neutron spectrometer consisting of 12 diamond pixels arranged in a matrix, so to achieve an improved geometrical efficiency. Each pixel is equipped with an independent high voltage supply and read-out electronics optimized to combine high energy resolution and fast signals (<30 ns), which are essential to enable high counting rate (>1 MHz) spectroscopy. The response function of a prototype SDD to 14 MeV neutrons has been measured at the Frascati Neutron Generator by observation of the 8.3 MeV peak from the 12C(n, α)9Be reaction occurring between neutrons and 12C nuclei in the detector. The measured energy resolution (2.5% FWHM) meets the requirements for neutron spectroscopy applications in deuterium-tritium plasmas.

1.
H.
Sjöstrand
 et al,
Rev. Sci. Instrum.
77
(
10
),
10E717
(
2006
).
2.
M. Gatu
Johnson
 et al,
Rev. Sci. Instrum.
77
(
10
),
10E702
(
2006
).
3.
X.
Zhang
 et al,
Rev. Sci. Instrum.
85
,
043503
(
2014
).
4.
A.
Pietropaolo
 et al,
EPL
92
(
6
),
68003
(
2010
).
5.
L.
Giacomelli
 et al,
Nucl. Phys. B, Proc. Suppl.
215
,
242
246
(
2011
).
6.
M.
Rebai
 et al,
Nucl. Phys. B, Proc. Suppl.
215
,
313
315
(
2011
).
7.
A.
Pietropaolo
 et al,
EPL
94
(
6
),
62001
(
2011
).
8.
M.
Rebai
 et al,
J. Instrum.
7
(
5
),
C05015
(
2012
).
9.
M.
Pillon
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
640
(
1
),
185
191
(
2011
).
10.
M.
Rebai
 et al,
J. Instrum.
8
(
10
),
P10007
(
2013
).
11.
L.
Giacomelli
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. A
720
,
125
127
(
2013
).
12.
Cross section database, see http://www.nndc.bnl.gov/.
13.
W. R.
Faust
and
E. G.
Harris
,
Nucl. Fusion
1
,
62
(
1960
).
14.
M.
Nocente
 et al,
Nucl. Fusion
51
,
063011
(
2011
).
15.
Z.
Chen
 et al,
Nucl. Fusion
53
,
063023
(
2013
).
16.
M.
Nocente
 et al,
Nucl. Fusion
50
,
055001
(
2010
).
17.
M.
Nocente
 et al,
Nucl. Fusion
53
,
053010
(
2013
).
18.
C.
Hellesen
 et al,
Nucl. Fusion
53
,
113009
(
2013
).
19.
M.
Tardocchi
 et al,
Plasma Phys. Controlled Fusion
55
,
074014
(
2013
).
20.
C.
Hellesen
 et al,
Nucl. Fusion
50
,
084006
(
2010
).
21.
M. Gatu
Johnson
 et al,
Nucl. Fusion
50
,
045005
(
2010
).
22.
A.
Krasilnikov
 et al,
Rev. Sci. Instrum.
68
(
1
),
553
556
(
1997
).
23.
M.
Pillon
 et al,
Nucl. Instrum. Methods Phys. Res., Sect. B
101
(
4
),
473
483
(
1995
).
24.
M.
Angelone
 et al,
Rev. Sci. Instrum.
76
(
1
),
013506
(
2005
).
25.
C.
Cazzaniga
 et al,
Rev. Sci. Instrum.
85
,
043506
(
2014
).
26.
D. M.
Trucchi
 et al,
IEEE Electron Device Lett.
33
,
615
617
(
2012
).
27.
M.
Girolami
 et al,
IEEE Electron Device Lett.
33
,
224
226
(
2012
).
28.
A.
Bellucci
 et al,
IEEE Electron Device Lett.
34
,
695
697
(
2013
).
29.
M.
Girolami
 et al,
Appl. Phys. Lett.
103
,
083502
(
2013
).
30.
D. M.
Trucchi
 et al,
Diamond Relat. Mater.
14
,
575
579
(
2005
).
31.
G.
Conte
 et al,
J. Appl. Phys.
93
,
6078
6083
(
2003
).
32.
G.
Conte
 et al,
Phys. Status Solidi A
201
,
249
252
(
2004
).
33.
Element Six Ltd, see http://www.e6.com.
34.
CIVIDEC, see http://www.cividec.at.
35.
M.
Martone
 et al,
J. Nucl. Mater.
212–215
,
1661
1664
(
1994
).
36.
37.
F.
Sudbrock
 et al,
Radiochim. Acta
88
,
829
832
(
2000
).
You do not currently have access to this content.