The application of conventional scanning thermal microscopy (SThM) is severely limited by three major problems: (i) distortion of the measured signal due to heat transfer through the air, (ii) the unknown and variable value of the tip-sample thermal contact resistance, and (iii) perturbation of the sample temperature due to the heat flux through the tip-sample thermal contact. Recently, we proposed null-point scanning thermal microscopy (NP SThM) as a way of overcoming these problems in principle by tracking the thermal equilibrium between the end of the SThM tip and the sample surface. However, in order to obtain high spatial resolution, which is the primary motivation for SThM, NP SThM requires an extremely sensitive SThM probe that can trace the vanishingly small heat flux through the tip-sample nano-thermal contact. Herein, we derive a relation between the spatial resolution and the design parameters of a SThM probe, optimize the thermal and electrical design, and develop a batch-fabrication process. We also quantitatively demonstrate significantly improved sensitivity, lower measurement noise, and higher spatial resolution of the fabricated SThM probes. By utilizing the exceptional performance of these fabricated probes, we show that NP SThM can be used to obtain a quantitative temperature profile with nanoscale resolution independent of the changing tip-sample thermal contact resistance and without perturbation of the sample temperature or distortion due to the heat transfer through the air.

1.
D.
Teyssieux
,
L.
Thiery
, and
B.
Cretin
,
Rev. Sci. Instrum.
78
,
034902
(
2007
).
2.
D.
Teyssieux
,
D.
Briand
,
J.
Charnay
,
N. F.
de Rooij
, and
B.
Cretin
,
J. Micromech. Microeng.
18
,
065005
(
2008
).
3.
G.
Tessier
,
S.
Holé
, and
D.
Fournier
,
Appl. Phys. Lett.
78
,
2267
(
2001
).
4.
J.
Christofferson
and
A.
Shakouri
,
Rev. Sci. Instrum.
76
,
024903
(
2005
).
5.
M.
Farzaneh
,
K.
Maize
,
D.
Lüerssen
,
J. A.
Summers
,
P. M.
Mayer
,
P. E.
Raad
,
K. P.
Pipe
,
A.
Shakouri
,
R. J.
Ram
, and
J. A.
Hudgings
,
J. Phys. D
42
(
14
),
143001
(
2009
).
6.
C.
Herzum
,
C.
Boit
,
J.
Kölzer
,
J.
Otto
, and
R.
Weiland
,
Microelectron. J.
29
,
163
170
(
1998
).
7.
M.
Kuball
,
S.
Rajasingam
,
A.
Sarua
,
M. J.
Uren
,
T.
Martin
,
B. T.
Hughes
,
K. P.
Hilton
, and
R. S.
Balmer
,
Appl. Phys. Lett.
82
,
124
126
(
2003
).
8.
A.
Soudi
,
R. D.
Dawson
, and
Y.
Gu
,
ACS Nano
5
(
1
),
255
262
(
2011
).
9.
E.
Saidi
,
B.
Samson
,
L.
Aigouy
,
S.
Volz
,
P.
Löw
,
C.
Bergaud
, and
M.
Mortier
,
Nanotechnology
20
,
115703
(
2009
).
10.
F.
Vetrone
,
R.
Naccache
,
A.
Zamarrón
,
A.
Juarranz de la Fuente
,
F.
Sanz-Rodríguez
,
L.
Martinez Maestro
,
E.
Martín Rodriguez
,
D.
Jaque
,
J.
García Solé
, and
J. A.
Capobianco
,
ACS Nano
4
(
6
),
3254
3258
(
2010
).
11.
K. E.
Goodson
and
M.
Asheghi
,
Microscale Thermophys. Eng.
1
,
225
235
(
1997
).
12.
T.
Fujii
,
Y.
Taguchi
,
T.
Saiki
, and
Y.
Nagasaka
,
Rev. Sci. Instrum.
83
,
124901
(
2012
).
13.
S.
Grauby
,
E.
Puyoo
,
J.-M.
Rampnoux
,
E.
Rouviére
, and
S.
Dilhaire
,
J. Phys. Chem. C
117
,
9025
(
2013
).
14.
M. M.
Rojo
,
S.
Grauby
,
J.-M.
Rampnoux
,
O.
Caballero-Calero
,
M.
Martin-Gonzalez
, and
S.
Dilhaire
,
J. Appl. Phys.
113
,
054308
(
2013
).
15.
F.
Menges
,
H.
Riel
,
A.
Stemmer
,
C.
Dimitrakopoulos
, and
B.
Gotsmann
,
Phys. Rev. Lett.
111
,
205901
(
2013
).
16.
M. E.
Pumarol
,
M. C.
Rosamond
,
P.
Tovee
,
M. C.
Petty
,
D. A.
Zeze
,
V.
Falko
, and
O. V.
Kolosov
,
Nano Lett.
12
,
2906
(
2012
).
17.
Y. J.
Yu
,
M. Y.
Han
,
S.
Berciaud
,
A. B.
Georgescu
,
T. F.
Heinz
,
L. E.
Brus
,
K. S.
Kim
, and
P.
Kim
,
Appl. Phys. Lett.
99
,
183105
(
2011
).
18.
J.
Lai
,
M.
Chandrachood
,
A.
Majumdar
, and
J. P.
Carrejo
,
IEEE Electron Device Lett.
16
,
312
(
1995
).
19.
K.
Luo
,
R. W.
Herrick
,
A.
Majumdar
, and
P.
Petroff
,
Appl. Phys. Lett.
71
,
1604
(
1997
).
20.
G. B. M.
Fiege
,
V.
Feige
,
J. C. H.
Phang
,
M.
Maywald
,
S.
Gorlich
, and
L. J.
Balk
,
Microelectron. Reliab.
38
,
957
(
1998
).
21.
G. B. M.
Fiege
,
F. J.
Niedernostheide
,
H. J.
Schulze
,
R.
Barthelmess
, and
L. J.
Balk
,
Microelectron. Reliab.
39
,
1149
(
1999
).
22.
O.
Kwon
and
A.
Majumdar
,
Microscale Thermophys. Eng.
7
,
349
(
2003
).
23.
F. A.
Boroumand
,
M.
Voigt
,
D. G.
Lidzey
,
A.
Hammiche
, and
G.
Hill
,
Appl. Phys. Lett.
84
,
4890
(
2004
).
24.
S. H.
Choi
,
T. L.
Lee
,
H. K.
Baik
,
H. H.
Roh
,
O.
Kwon
, and
D. H.
Suh
,
Appl. Phys. Lett.
93
,
183301
(
2008
).
25.
J.
Chung
,
K.
Kim
,
G.
Hwang
,
O.
Kwon
,
S.
Jung
,
J.
Lee
,
J. W.
Lee
, and
G. T.
Kim
,
Rev. Sci. Instrum.
81
,
114901
(
2010
).
26.
I.
Jo
,
I. K.
Hsu
,
Y. J.
Lee
,
M. M.
Sadeghi
,
S.
Kim
,
S.
Cronin
,
E.
Tutuc
,
S. K.
Banerjee
,
Z.
Yao
, and
L.
Shi
,
Nano Lett.
11
,
85
(
2011
).
27.
F.
Menges
,
H.
Riel
,
A.
Stemmer
, and
B.
Gotsmann
,
Nano Lett.
12
,
596
(
2012
).
28.
J.
Song
,
C.
Lu
,
X.
Xie
,
Y.
Li
,
Y.
Zhang
,
K. L.
Grosse
,
S.
Dunham
,
Y.
Huang
,
W. P.
King
, and
J. A.
Rogers
,
J. Appl. Mech.-Trans. ASME
80
,
040907
(
2013
).
29.
L.
Shi
and
A.
Majumdar
,
J. Heat Transfer
124
,
329
(
2002
).
30.
K.
Kim
,
J.
Chung
,
J.
Won
,
O.
Kwon
,
J. S.
Lee
,
S. H.
Park
, and
Y. K.
Choi
,
Appl. Phys. Lett.
93
,
203115
(
2008
).
31.
K.
Kim
,
J.
Chung
,
G.
Hwang
,
O.
Kwon
, and
J. S.
Lee
,
ACS Nano
5
,
8700
(
2011
).
32.
S.
Berciaud
,
M. Y.
Han
,
K. F.
Mak
,
L. E.
Brus
,
P.
Kim
, and
T. F.
Heinz
,
Phys. Rev. Lett.
104
,
227401
(
2010
).
33.
Z.
Chen
,
W.
Jang
,
W.
Bao
,
C. N.
Lau
, and
C.
Dames
,
Appl. Phys. Lett.
95
,
161910
(
2009
).
34.
K. F.
Mak
,
C. H.
Lui
, and
T. F.
Heinz
,
Appl. Phys. Lett.
97
,
221904
(
2010
).
35.
Y.
Yue
,
J.
Zhang
, and
X.
Wang
,
Small
7
,
3324
(
2011
).
36.
J.
Chung
,
K.
Kim
,
G.
Hwang
,
O.
Kwon
,
Y. K.
Choi
, and
J. S.
Lee
,
Int. J. Therm. Sci.
62
,
109
(
2012
).
37.
L.
Shi
,
O.
Kwon
,
A. C.
Miner
, and
A.
Majumdar
,
J. Microelectromech. Syst.
10
,
370
(
2001
).
38.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
Waltham, MA
,
2011
), pp.
456
460
.
39.
K.
Luo
,
Z.
Shi
,
J.
Varesi
, and
A.
Majumdar
,
J. Vac. Sci. Technol., B
15
,
349
(
1997
).
40.
See supplementary material at http://dx.doi.org/10.1063/1.4901094 for brief description of the relevant details.
41.
42.
P. G.
Sverdrup
,
Y. S.
Ju
, and
K. E.
Goodon
,
J. Heat Transfer-Trans. ASME
123
,
130
(
2001
).
43.
S. V. J.
Naurmanchi
,
J. Y.
Murthy
, and
C. H.
Amon
,
J. Heat Transfer-Trans. ASME
127
,
713
(
2005
).
44.
J. S.
Jin
and
J. S.
Lee
,
J. Nanosci. Nanotechnol.
7
,
4094
(
2007
).

Supplementary Material

You do not currently have access to this content.