A simple ball-drop impact tester is developed for studying the dynamic response of hierarchical, complex, small-sized systems and materials. The developed algorithm and set-up have provisions for applying programmable potential difference along the height of a test specimen during an impact loading; this enables us to conduct experiments on various materials and smart structures whose mechanical behavior is sensitive to electric field. The software-hardware system allows not only acquisition of dynamic force-time data at very fast sampling rate (up to 2 × 106 samples/s), but also application of a pre-set potential difference (up to ±10 V) across a test specimen for a duration determined by feedback from the force-time data. We illustrate the functioning of the set-up by studying the effect of electric field on the energy absorption capability of carbon nanotube foams of 5 × 5 × 1.2 mm3 size under impact conditions.

1.
C. T.
Lim
and
Y. J.
Low
, in
Proceedings of the 52nd Conference on Electronic Components and Technology
(
IEEE
,
2002
).
2.
J.
Varghese
and
A.
Dasgupta
,
Microelectron. Reliab.
47
,
93
(
2007
).
3.
K. T.
Tsai
,
F. L.
Liu
,
E. H.
Wong
, and
R.
Rajoo
,
Soldering Surf. Mount Technol.
18
,
12
(
2006
).
4.
R.
Thevamaran
and
C.
Daraio
,
Exp. Mech.
54
,
1319
(
2014
).
5.
ASTM E23 − 12c, Standard Test Methods for Notched Bar Impact Testing of Metallic materials.
6.
W.
Chen
,
B.
Song
,
D. J.
Frew
, and
M. J.
Forrestal
,
Exp. Mech.
43
,
20
(
2003
).
7.
G.
Ravichandran
and
G.
Subhash
,
J. Am. Ceram. Soc.
77
,
263
(
1994
).
8.
C. A.
Ross
,
P. Y.
Thompson
, and
J. W.
Tedesco
,
ACI Mater. J.
86
,
475
(
1989
).
9.
W.
Chen
,
B.
Zhang
, and
M. J.
Forrestal
,
Exp. Mech.
39
,
81
(
1999
).
10.
F.
Taheri-Behrooz
,
M. M.
Shokrieh
, and
H. R.
Abdolvand
,
Eng. Solid Mech.
1
,
69
(
2013
).
11.
D. Y.
Chong
,
F. X.
Che
,
J. H.
Pang
,
K.
Ng
,
J. Y.
Tan
, and
P. T.
Low
,
Microelectron. Reliab.
46
,
1160
(
2006
).
13.
M. N.
Ghasemi-Nejhad
and
A.
Parvizi-Majidi
,
Composites
21
,
155
(
1990
).
14.
I. Y.
Telitchev
,
R. L.
Sierakowski
, and
O. I.
Zhupanska
,
Exp. Tech.
32
,
53
(
2008
).
15.
D.
Winkel
and
D. F.
Adams
,
Composites
16
,
268
(
1985
).
16.
Q.
Zhang
,
M.
Zhao
,
Y.
Liu
,
A.
Cao
,
W.
Qian
,
Y.
Lu
, and
F.
Wei
,
Adv. Mater.
21
,
2876
(
2009
).
17.
A.
Misra
,
J. R.
Greer
, and
C.
Daraio
,
Adv. Mater.
20
,
A1
(
2008
).
18.
C.
Daraio
,
V. F.
Nesterenko
,
S.
Jin
,
W.
Wang
, and
A. M.
Rao
,
J. Appl. Phys.
100
,
064309
(
2006
).
19.
C.
Daraio
,
V. F.
Nesterenko
, and
S.
Jin
,
Appl. Phys. Lett.
85
,
5724
(
2004
).
20.
A.
Cao
,
P. L.
Dickrell
,
W. G.
Sawyer
,
M. N.
Ghasemi-Nejhad
, and
P. M.
Ajayan
,
Science
310
,
1307
(
2005
).
21.
P.
Jagtap
,
P.
Gowda
,
B.
Das
, and
P.
Kumar
,
Carbon
60
,
169
(
2013
).
22.
P.
Jagtap
,
S. K.
Reddy
, and
P.
Kumar
, “
Tailoring Energy Absorption Capacity of Carbon Nanotube Foams through Application of Electric Field
” (unpublished).
23.
A.
Misra
and
P.
Kumar
,
Nanoscale
6
,
13668
(
2014
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4900842 for screen shots of the block diagram showing the implemented logic structure.
25.
P. G.
Collins
and
P.
Avouris
,
Sci. Am.
283
,
62
(
2000
).

Supplementary Material

You do not currently have access to this content.