Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from 1H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

1.
D. D.
Awschalom
,
J. R.
Rozen
,
M. B.
Ketchen
,
W. J.
Gallagher
,
A. W.
Kleinsasser
,
R. L.
Sandstrom
, and
B.
Bumble
,
Appl. Phys. Lett.
53
,
2108
(
1988
).
2.
M. B.
Ketchen
,
D. D.
Awschalom
,
W. J.
Gallagher
,
A. W.
Kleinsasser
,
R. L.
Sandstrom
,
J. R.
Rozen
, and
B.
Bumble
,
IEEE Trans. Magn.
25
,
1212
(
1989
).
3.
L. R.
Narasimhan
,
C. K. N.
Patel
, and
M. B.
Ketchen
,
Appl. Phys. Lett.
73
,
993
(
1998
).
4.
M. J. Martinez-Perez,
J.
Sese
,
F.
Luis
,
R.
Cordoba
,
D.
Drung
,
T.
Schurig
,
E.
Bellido
,
R.
de Miguel
,
C.
Gomez-Moreno
,
A.
Lostao
, and
D.
Ruiz-Molina
,
IEEE Trans. Appl. Supercond.
21
,
345
(
2011
).
5.
S.
Bechstein
,
A.
Kirste
,
D.
Drung
,
M.
Regin
,
O.
Kazakova
,
J.
Gallop
,
L.
Hao
,
D.
Cox
, and
T.
Schurig
,
IEEE Trans. Appl. Supercond.
23
,
1602004
(
2013
).
6.
W.
Reim
,
R. H.
Koch
,
A. P.
Malozemoff
,
M. B.
Ketchen
, and
H.
Maletta
,
Phys. Rev. Lett.
57
,
905
(
1986
).
7.
D. D.
Awschalom
,
J.
Warnock
, and
S.
von Molnar
,
Phys. Rev. Lett.
58
,
812
(
1987
).
8.
M. E.
Huber
,
N. C.
Koshnick
,
H.
Bluhm
,
L. J.
Archuleta
,
T.
Azua
,
P. G.
Bjornsson
,
B. W.
Gardner
,
S. T.
Halloran
,
E. A.
Lucero
, and
K. A.
Moler
,
Rev. Sci. Instrum.
79
,
053704
(
2008
).
9.
L. R.
Narasimhan
,
M.
Takigawa
, and
M. B.
Ketchen
,
Appl. Phys. Lett.
65
,
1305
(
1994
).
10.
Ya. S.
Greenberg
,
Rev. Mod. Phys.
70
,
175
(
1998
).
11.
M. P.
Augustine
,
D. M.
TonThat
, and
J.
Clarke
,
Solid State Nucl. Magn. Reson.
11
,
139
(
1998
).
12.
C. L.
Degen
,
M.
Poggio
,
H. J.
Mamin
,
C. T.
Rettner
, and
D.
Rugar
,
Proc. Natl. Acad. Sci.
106
,
1313
(
2009
).
13.
J. M.
Nichol
,
E. R.
Hemesath
,
L. J.
Lauhon
, and
R.
Budakian
,
Phys. Rev. B
85
,
054414
(
2012
).
14.
A.
Vinante
,
A.
Kirste
,
A.
den Haan
,
O.
Usenko
,
G.
Wijts
,
E.
Jeffrey
,
P.
Sonin
,
D.
Bouwmeester
, and
T. H.
Oosterkamp
,
Appl. Phys. Lett.
101
,
123101
(
2012
).
15.
A.
Vinante
and
P.
Falferi
,
Phys. Rev. Lett.
111
,
207203
(
2013
).
16.
J.
Nagel
,
A.
Buchter
,
F.
Xue
,
O. F.
Kieler
,
T.
Weimann
,
J.
Kohlmann
,
A. B.
Zorin
,
D.
Ruffer
,
E.
Russo-Averchi
,
R.
Huber
 et al,
Phys. Rev. B
88
,
064425
(
2013
).
17.
A.
Vinante
,
G.
Wijts
,
O.
Usenko
,
L.
Schinkelshoek
, and
T. H.
Oosterkamp
,
Nat. Commun.
2
,
572
(
2011
).
18.
Quantum Magnetics Inc., part SSC-001, device KSUP10-20.
19.
M.
Ketchen
,
D. J.
Pearson
,
K.
Stawiasz
,
C.-K.
Hu
,
A. W.
Kleinsasser
,
T.
Brunner
,
C.
Cabral
,
V.
Chandrashekhar
,
M.
Jaso
,
M.
Manny
,
K.
Stein
, and
M.
Bhushan
,
IEEE Trans. Appl. Supercond.
3
,
1795
(
1993
).
20.
See http://www.magnicon.com for Magnicon SQUID series array.
21.
See http://www.magnicon.com for Magnicon model XXF-1.
22.
F. C.
Wellstood
,
C.
Heiden
, and
J.
Clarke
,
Rev. Sci. Instrum.
55
,
952
(
1984
).
23.
A.
Shibahara
,
A.
Casey
,
C. P.
Lusher
,
J.
Saunders
,
C.
Assmann
,
T.
Schurig
, and
D.
Drung
,
AIP Adv.
4
,
027107
(
2014
).
You do not currently have access to this content.