The Superfluid High REynolds von Kármán experiment facility exploits the capacities of a high cooling power refrigerator (400 W at 1.8 K) for a large dimension von Kármán flow (inner diameter 0.78 m), which can work with gaseous or subcooled liquid (He-I or He-II) from room temperature down to 1.6 K. The flow is produced between two counter-rotating or co-rotating disks. The large size of the experiment allows exploration of ultra high Reynolds numbers based on Taylor microscale and rms velocity [S. B. Pope, Turbulent Flows (Cambridge University Press, 2000)] (Rλ > 10000) or resolution of the dissipative scale for lower Re. This article presents the design and first performance of this apparatus. Measurements carried out in the first runs of the facility address the global flow behavior: calorimetric measurement of the dissipation, torque and velocity measurements on the two turbines. Moreover first local measurements (micro-Pitot, hot wire,…) have been installed and are presented.

1.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
2.
M. V.
Zagarola
and
A. J.
Smits
,
J. Fluid Mech.
373
,
33
(
1998
).
3.
J.-D.
Rüedi
,
A.
Talamelli
,
H. M.
Nagib
,
P. H.
Alfredsson
, and
P. A.
Monkewitz
, in
Prog. Turbul. III
, edited by
J.
Peinke
,
M.
Oberlack
, and
A.
Talamelli
(
Springer
,
Berlin
,
2010
), pp.
73
77
.
4.
G. P.
Bewley
,
H.
Nobach
,
M.
Sinhuber
,
H.
Xu
, and
E.
Bodenschatz
, e-print arXiv:14014970 (
2014
).
5.
F.
Moisy
,
P.
Tabeling
, and
H.
Willaime
,
Phys. Rev. Lett.
82
,
3994
(
1999
).
6.
O.
Chanal
,
B.
Chabaud
,
B.
Castaing
, and
B.
Hébral
,
Eur. Phys. J. B: Condens. Matter Complex Syst.
17
,
309
(
2000
).
7.
S.
Pietropinto
,
C.
Poulain
,
C.
Baudet
,
B.
Castaing
,
B.
Chabaud
,
Y.
Gagne
,
B.
Hébral
,
Y.
Ladam
,
P.
Lebrun
,
O.
Pirotte
, and
P.
Roche
,
Phys. C. Supercond.
386
,
512
(
2003
).
8.
C. J.
Swanson
,
R. J.
Donnelly
, and
G. G.
Ihas
,
Phys. B. Condens. Matter
284–288
(
1
),
77
(
2000
).
9.
D.
Duri
,
C.
Baudet
,
P.
Charvin
,
J.
Virone
,
B.
Rousset
,
J.-M.
Poncet
, and
P.
Diribarne
,
Rev. Sci. Instrum.
82
,
115109
(
2011
).
10.
J.
Salort
,
B.
Chabaud
,
E.
Lévêque
, and
P.-E.
Roche
,
EPL Europhys. Lett.
97
,
34006
(
2012
).
11.
The “lambda” subscript is not related to the similar subscript used for the microscale Reynolds number.
12.
J.
Maurer
and
P.
Tabeling
,
EPL Europhys. Lett.
43
,
29
(
1998
).
13.
S.
Fuzier
and
S. W.
Van Sciver
,
Cryogenics
48
,
130
(
2008
).
14.
J.
Salort
,
C.
Baudet
,
B.
Castaing
,
B.
Chabaud
,
F.
Daviaud
,
T.
Didelot
,
P.
Diribarne
,
B.
Dubrulle
,
Y.
Gagne
,
F.
Gauthier
,
A.
Girard
,
B.
Hébral
,
B.
Rousset
,
P.
Thibault
, and
P.-E.
Roche
,
Phys. Fluids
22
,
125102
(
2010
).
15.
W. F.
Vinen
and
J. J.
Niemela
,
J. Low Temp. Phys.
128
,
167
(
2002
).
16.
L.
Skrbek
and
K. R.
Sreenivasan
,
Phys. Fluids
24
,
011301
(
2012
).
17.
J.
Salort
,
A.
Monfardini
, and
P.-E.
Roche
,
Rev. Sci. Instrum.
83
,
125002
(
2012
).
18.
P.-E.
Roche
,
P.
Diribarne
,
T.
Didelot
,
O.
Français
,
L.
Rousseau
, and
H.
Willaime
,
EPL Europhys. Lett.
77
,
66002
(
2007
).
19.
F.
Ravelet
, “
Bifurcation Globales Hydrodynamiques et Magnetohydrodnamiques Dans Un Écoulement de von Karman Turbulent
,” École doctorale de l’école Polytechnique,
2005
.
20.
G.
Zocchi
,
P.
Tabeling
,
J.
Maurer
, and
H.
Willaime
,
Phys. Rev. E
50
,
3693
(
1994
).
21.
D.
Schmoranzer
,
M.
Rotter
,
J.
Sebek
, and
L.
Skrbek
, Experimental setup for probing a von Karman type flow of normal and superfluid helium. Experimental Fluid Mechanics 2009, Proceedings of the International Conference (
Technical University of Liberec
,
Liberec, Czech Republic
) (
2009
), pp
304
309
.
22.
M.
Berhanu
,
R.
Monchaux
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
L.
Marié
,
F.
Ravelet
,
M.
Bourgoin
,
P.
Odier
,
J.-F.
Pinton
, and
R.
Volk
,
EPL Europhys. Lett.
77
,
59001
(
2007
).
23.
R.
Monchaux
,
M.
Berhanu
,
M.
Bourgoin
,
M.
Moulin
,
P.
Odier
,
J.-F.
Pinton
,
R.
Volk
,
S.
Fauve
,
N.
Mordant
,
F.
Pétrélis
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
,
C.
Gasquet
,
L.
Marié
, and
F.
Ravelet
,
Phys. Rev. Lett.
98
,
044502
(
2007
).
24.
S. W. V.
Sciver
,
Helium Cryogenics
(
Springer
,
2011
).
25.
F.
Moisy
,
H.
Willaime
,
J.
Andersen
, and
P.
Tabeling
,
Phys. Rev. Lett.
86
,
4827
(
2001
).
26.
C.
Herbert
,
B.
Dubrulle
,
P. H.
Chavanis
, and
D.
Paillard
,
Phys. Rev. E
85
,
056304
(
2012
).
27.
P.-P.
Cortet
,
P.
Diribarne
,
R.
Monchaux
,
A.
Chiffaudel
,
F.
Daviaud
, and
B.
Dubrulle
,
Phys. Fluids
21
,
025104
(
2009
).
28.
S.
Fauve
,
C.
Laroche
, and
B.
Castaing
,
J. Phys. II
3
,
271
(
1993
).
29.
R.
Labbe
,
J.-F.
Pinton
, and
S.
Fauve
,
J. Phys. II
6
,
1099
(
1996
).
30.
F.
Ravelet
,
L.
Marié
,
A.
Chiffaudel
, and
F.
Daviaud
,
Phys. Rev. Lett.
93
,
164501
(
2004
).
31.
A.
de la Torre
and
J.
Burguete
,
Phys. Rev. Lett.
99
,
054101
(
2007
).
32.
P.-P.
Cortet
,
A.
Chiffaudel
,
F.
Daviaud
, and
B.
Dubrulle
,
Phys. Rev. Lett.
105
,
214501
(
2010
).
33.
P.-P.
Cortet
,
E.
Herbert
,
A.
Chiffaudel
,
F.
Daviaud
,
B.
Dubrulle
, and
V.
Padilla
,
J. Stat. Mech. Theory Exp.
2011
,
P07012
(
2011
).
34.
B.
Saint-Michel
,
B.
Dubrulle
,
L.
Marié
,
F.
Ravelet
, and
F.
Daviaud
,
Phys. Rev. Lett.
111
,
234502
(
2013
).
35.
J.
Burguete
and
A. D. L.
Torre
,
Int. J. Bifurc. Chaos
19
,
2695
(
2009
).
36.
F.
Ravelet
,
A.
Chiffaudel
, and
F.
Daviaud
,
J. Fluid Mech.
601
,
339
(
2008
).
37.
M.
Bourgoin
,
L.
Marié
,
F.
Pétrélis
,
C.
Gasquet
,
A.
Guigon
,
J.-B.
Luciani
,
M.
Moulin
,
F.
Namer
,
J.
Burguete
,
A.
Chiffaudel
,
F.
Daviaud
,
S.
Fauve
,
P.
Odier
, and
J.-F.
Pinton
,
Phys. Fluids
14
,
3046
(
2002
).
38.
G. Bon
Mardion
,
G.
Claudet
,
P.
Seyfert
, and
J.
Verdier
, in
Advances in Cryogenic Engineering
, edited by
K. D.
Timmerhaus
(
Springer
,
US
,
1978
), pp.
358
362
.
39.
P.
Roussel
,
A.
Girard
,
B.
Jager
,
B.
Rousset
,
P.
Bonnay
,
F.
Millet
, and
P.
Gully
,
AIP Conf. Proc.
823
,
1420
(
2006
).
40.
O.
Cadot
,
Y.
Couder
,
A.
Daerr
,
S.
Douady
, and
A.
Tsinober
,
Phys. Rev. E
56
,
427
(
1997
).
41.
S.
Babuin
,
E.
Varga
,
L.
Skrbek
,
E.
Lévêque
, and
P.-E.
Roche
,
EPL Europhys. Lett.
106
,
24006
(
2014
);
J.
Salort
,
P.-E.
Roche
, and
E.
Lévêque
,
EPL
94
,
24001
(
2011
).
42.
The slight difference is rotational speed results from an attempt to reduce the axial component of the flow in the probe area.
43.
C.
Simand
,
F.
Chillà
, and
J.-F.
Pinton
,
EPL Europhys. Lett.
49
,
336
(
2000
).
You do not currently have access to this content.