An apparatus for measuring the Seebeck coefficient and electrical conductivity is presented and characterized. The device can be used in a wide temperature range from room temperature to 1050 °C and in all common atmospheres, including oxidizing, reducing, humid, and inert. The apparatus is suitable for samples with different geometries (disk-, bar-shaped), allowing a complete thermoelectric characterization (including thermal conductivity) on a single sample. The Seebeck coefficient α can be measured in both sample directions (in-plane and cross-plane) simultaneously. Electrical conductivity is measured via the van der Pauw method. Perovskite-type CaMnO3 and the misfit cobalt oxide (Ca2CoO3)q(CoO2) are studied to demonstrate the temperature range and to investigate the variation of the electrical properties as a function of the measurement atmosphere.

1.
H. J.
Goldsmid
,
Introduction to Thermoelectricity
(
Springer-Verlag
,
Berlin
,
2010
).
2.
J.
Martin
,
T.
Tritt
, and
C.
Uher
, “
High temperature Seebeck coefficient metrology
,”
J. Appl. Phys.
108
(
12
),
121101
(
2010
).
3.
A. T.
Burkov
,
A.
Heinrich
,
P. P.
Konstantinov
,
T.
Nakama
, and
K.
Yagasaki
, “
Experimental set-up for thermopower and resistivity measurements at 100–1300 K
,”
Meas. Sci. Technol.
12
(
3
),
264
(
2001
).
4.
J.
Boor
,
C.
Stiewe
,
P.
Ziolkowski
,
T.
Dasgupta
,
G.
Karpinski
,
E.
Lenz
,
F.
Edler
, and
E.
Mueller
, “
High-temperature measurement of Seebeck coefficient and electrical conductivity
,”
J. Electron. Mater.
42
(
7
),
1711
1718
(
2013
).
5.
C.
Byl
,
D.
Bérardan
, and
N.
Dragoe
, “
Experimental setup for measurements of transport properties at high temperature and under controlled atmosphere
,”
Meas. Sci. Technol.
23
(
3
),
035603
(
2012
).
6.
S.
Iwanaga
,
E. S.
Toberer
,
A.
LaLonde
, and
G. J.
Snyder
, “
A high temperature apparatus for measurement of the Seebeck coefficient
,”
Rev. Sci. Instrum.
82
(
6
),
063905
(
2011
).
7.
P. H. M.
Böttger
,
E.
Flage-Larsen
,
O. B.
Karlsen
, and
T. G.
Finstad
, “
High temperature Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin disk geometry
,”
Rev. Sci. Instrum.
83
(
2
),
025101
(
2012
).
8.
G. J.
Snyder
and
E. S.
Toberer
, “
Complex thermoelectric materials
,”
Nat. Mater.
7
,
105
114
(
2008
).
9.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C.-I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
, “
High-performance bulk thermoelectrics with all-scale hierarchical architectures
,”
Nature (London)
489
,
414
418
(
2012
).
10.
I.
Terasaki
,
Y.
Sasago
, and
K.
Uchinokura
, “
Large thermoelectric power in NaCo2O4 single crystals
,”
Phys. Rev. B
56
(
20
),
R12685
R12687
(
1997
).
11.
S.
Hébert
and
A.
Maignan
,
Thermoelectric Oxides
(
John Wiley & Sons, Ltd
,
2010
), pp.
203
255
.
12.
J. W.
Fergus
, “
Oxide materials for high temperature thermoelectric energy conversion
,”
J. Eur. Ceram. Soc.
32
(
3
),
525
540
(
2012
).
13.
T.
Norby
, “
EMF method determination of conductivity contributions from protons and other foreign ions in oxides
,”
Solid State Ionics
28–30
(
2
),
1586
1591
(
1988
).
14.
A. T.
Burkov
,
Measurements of Resistivity and Thermopower: Principles and Practical Realization
(
CRC Taylor and Francis
,
2006
), Chap. 22.
15.
J.
Martin
, “
Protocols for the high temperature measurement of the Seebeck coefficient in thermoelectric materials
,”
Meas. Sci. Technol.
24
(
8
),
085601
(
2013
).
16.
L. J.
Van der Pauw
, “
A method of measuring specific resistivity and Hall effect of discs of arbitrary shape
,”
Philips Res. Rep.
13
,
1
9
(
1958
).
17.
L.
Bocher
,
M. H.
Aguirre
,
R.
Robert
,
D.
Logvinovich
,
S.
Bakardjieva
,
J.
Hejtmanek
, and
A.
Weidenkaff
, “
High-temperature stability, structure and thermoelectric properties of phases
,”
Acta Mater.
57
(
19
),
5667
5680
(
2009
).
18.
P.
Thiel
,
J.
Eilertsen
,
S.
Populoh
,
G.
Saucke
,
M.
Döbeli
,
A.
Shkabko
,
L.
Sagarna
,
L.
Karvonen
, and
A.
Weidenkaff
, “
Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3 − δ
,”
J. Appl. Phys.
114
(
24
),
243707
(
2013
).
19.
M.
Ohtaki
,
H.
Koga
,
T.
Tokunaga
,
K.
Eguchi
, and
H.
Arai
, “
Electrical transport properties and high-temperature thermoelectric performance of (Ca0.9M0.1)MnO3 (M = Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi)
,”
J. Solid State Chem.
120
(
1
),
105
111
(
1995
).
20.
J.-I.
Shimoyama
,
S.
Horii
,
K.
Otzschi
,
M.
Sano
, and
K.
Kishio
, “
Oxygen nonstoichiometry in layered cobaltite Ca3Co4Oy
,”
Jpn. J. Appl. Phys.
42
(
Part 2, No. 2B
),
L194
L197
(
2003
).
21.
C. D.
Ling
,
K.
Aivazian
,
S.
Schmid
, and
P.
Jensen
, “
Structural investigation of oxygen non-stoichiometry and cation doping in misfit-layered thermoelectric (Ca2CoO3−x)(CoO2)δ, δ ≈ 1.61
,”
J. Solid State Chem.
180
(
4
),
1446
1455
(
2007
).
22.
F. A.
Kröger
and
H. J.
Vink
,
Relations between the Concentrations of Imperfections in Crystalline Solids
(
Academic Press
,
1956
), pp.
307
435
.
23.
A. C.
Masset
,
C.
Michel
,
A.
Maignan
,
M.
Hervieu
,
O.
Toulemonde
,
F.
Studer
,
B.
Raveau
, and
J.
Hejtmanek
, “
Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9
,”
Phys. Rev. B
62
,
166
175
(
2000
).
24.
D.
Kenfaui
,
D.
Chateigner
,
M.
Gomina
, and
J. G.
Noudem
, “
Anisotropy of the mechanical and thermoelectric properties of hot-pressed single-layer and multilayer thick Ca3Co4O9 ceramics
,”
Int. J. Appl. Ceram. Technol.
8
(
1
),
214
226
(
2011
).
25.
G.
Saucke
,
S.
Populoh
,
N.
Vogel-Schäuble
,
L.
Sagarna
,
K.
Mogare
,
L.
Karvonen
, and
A.
Weidenkaff
, “
Thermoelectric properties of Ru and in substituted misfit-layered Ca3Co4O9
,”
MRS Online Proc. Libr.
1543
(
1
),
83
92
(
2013
).
26.
G. D.
Tang
,
H. H.
Guo
,
T.
Yang
,
D. W.
Zhang
,
X. N.
Xu
,
L. Y.
Wang
,
Z. H.
Wang
,
H. H.
Wen
,
Z. D.
Zhang
, and
Y. W.
Du
, “
Anisotropic thermopower and magnetothermopower in a misfit-layered calcium cobaltite
,”
Appl. Phys. Lett.
98
(
20
),
202109
(
2011
).
27.
V.
Ponnambalam
,
S.
Lindsey
,
N. S.
Hickman
, and
Terry M.
Tritt
, “
Sample probe to measure resistivity and thermopower in the temperature range of 300–1000 K
,”
Rev. Sci. Instrum.
77
(
7
),
073904
(
2006
).
28.
C. L.
Foiles
, “
Thermopower of pure metals and dilute alloys
,” in
Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology
(
Springer-Verlag
,
Berlin
,
1985
).
29.
C. A.
Domenicali
and
F. A.
Otter
, “
Thermoelectric power and electrical resistivity of dilute alloys of silicon in copper, nickel, and iron
,”
J. Appl. Phys.
26
(
4
),
377
380
(
1955
).
You do not currently have access to this content.