Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on a novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.

1.
G.
Binnig
,
C. F.
Quate
, and
Ch.
Gerber
,
Phys. Rev. Lett.
56
,
930
(
1986
).
2.
D. J.
Burns
,
K.
Youcef-Toumi
, and
G. E.
Fantner
,
Nanotechnology
22
(
31
),
315701
(
2011
).
3.
S.
Salapaka
,
A.
Sebastian
,
J. P.
Cleveland
, and
M. V.
Salapaka
,
Rev. Sci. Instrum.
73
(
9
),
3232
(
2002
).
4.
G.
Schitter
and
A.
Stemmer
,
Microelectronic. Eng.
67–68
,
938
(
2003
).
5.
G.
Schitter
,
K. J.
Åström
,
B.
DeMartini
,
G. E.
Fantner
,
K.
Turner
,
P. J.
Thurner
, and
P. K.
Hansma
, in
Proceedings of the 2006 American Control Conference Minneapolis
,
Minnesota, USA
(14–16 June
2006
).
6.
E.
Guliyev
,
B. E.
Volland
,
Y.
Sarov
,
Tzv.
Ivanov
,
M.
Klukowski
,
E.
Manske
, and
I. W.
Rangelow
,
Meas. Sci. Technol.
23
,
074012
(
2012
).
7.
K. El
Rifai
,
O. El
Rifai
, and
K.
Youcef-Toumi
, in
Proceedings of the 2004 American Control Conference
,
Boston, MA
, 30 June–2 July
2004
, pp.
3128
3133
.
8.
G. E.
Fantner
,
D. J.
Burns
,
A. M.
Belcher
,
I. W.
Rangelow
, and
K.
Youcef-Toumi
,
J. Dyn. Sys., Meas., Control
131
(
6
),
061104
(
2009
) (13 pages).
9.
J. H.
Kindt
,
G. E.
Fantner
,
J. A.
Cutroni
, and
P. K.
Hansma
,
Ultramicroscopy
100
(
3–4
),
259
(
2004
).
10.
A.
Sebastian
and
S. M.
Salapaka
,
IEEE Trans. Control Syst. Technol.
13
(
6
),
868
(
2005
).
11.
N.
Kodera
,
H.
Yamashita
, and
T.
Ando
,
Rev. Sci. Instrum.
76
(
5
),
053708
(
2005
).
12.
I. S.
Bozchalooi
,
K.
Youcef-Toumi
,
D. J.
Burns
, and
G. E.
Fantner
,
Rev. Sci. Instrum.
82
,
113712
(
2011
).
13.
G.
Schitter
,
F.
Allgower
, and
A.
Stemmer
,
Nanotechnology
15
(
1
),
108
(
2004
).
14.
N.
Kodera
,
M.
Sakashita
, and
T.
Ando
,
Rev. Sci. Instrum.
77
,
083704
(
2006
).
15.
I.
Gunev
,
A.
Varol
,
S.
Karaman
, and
C.
Basdogan
,
Rev. Sci. Instrum.
78
,
043707
(
2007
).
16.
R.
Pedrak
,
Tzv.
Ivanov
,
T.
Gotszalk
,
P.
Hudek
,
O.
Fortagne
, and
I. W.
Rangelow
,
J. Vac. Sci. Technol. B
21
(
6
),
3102
3107
(
2003
).
17.
Tzv.
Ivanov
,
T.
Gotszalk
,
P.
Grabiec
,
E.
Tomerov
, and
I. W.
Rangelow
,
Microelectron. Eng.
67–68
,
550
556
(
2003
).
18.
Tzv.
Ivanov
,
T.
Gotszalk
,
T.
Sulzbach
,
I.
Chakarov
, and
I. W.
Rangelow
,
Microelectron. Eng.
67–68
,
534
541
(
2003
).
19.
Tzv.
Ivanov
,
T.
Gotszalk
,
T.
Sulzbach
, and
I. W.
Rangelow
,
Ultramicroscopy
97
(
1–4
),
377
384
(
2003
).
You do not currently have access to this content.