We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

1.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
(
Oxford University Press
,
New York
,
2008
).
2.
S.
Behler
,
M. K.
Rose
,
J. C.
Dunphy
,
D. F.
Ogletree
,
M.
Salmeron
, and
C.
Chapelier
,
Rev. Sci. Instrum.
68
,
2479
(
1997
).
3.
B. C.
Stipe
,
M. A.
Rezaei
, and
W.
Ho
,
Rev. Sci. Instrum.
70
,
137
(
1999
).
4.
E. T.
Foley
,
N. L.
Yoder
,
N. P.
Guisinger
, and
M. C.
Hersam
,
Rev. Sci. Instrum.
75
,
5280
(
2004
).
5.
G.
Meyer
,
Rev. Sci. Instrum.
67
,
2960
(
1996
).
6.
S. H.
Pan
,
E. W.
Hudson
, and
J. C.
Davis
,
Rev. Sci. Instrum.
70
,
1459
(
1999
).
7.
B. J.
Albers
,
M.
Liebmann
,
T. C.
Schwendemann
,
M. Z.
Baykara
,
M.
Heyde
,
M.
Salmeron
,
E. I.
Altman
, and
U. D.
Schwarz
,
Rev. Sci. Instrum.
79
,
033704
(
2008
).
8.
S.
Zhang
, “
United States extends life of helium reserve: Congress moves to head off shortages, but US researchers still face ballooning prices
,” Nature News, 26 September
2013
.
9.
CS202PF-X20B Cryostat from Advanced Research Systems, Inc., Macungie, PA.
10.
T.
Tomaru
,
T.
Suzuki
,
T.
Haruyama
,
T.
Shintomi
,
A.
Yamamoto
,
T.
Koyama
, and
R.
Li
,
Cryogenics
44
,
309
(
2004
).
11.
Cryostat noise specifications are available from Advanced Research Systems, Inc., Macungie, PA.
12.
RHK Technology, Inc., Troy, MI.
13.
H. J.
Hug
,
B.
Stiefel
,
P. J. A.
van Schendel
,
A.
Moser
,
S.
Martin
, and
H. J.
Guntherodt
,
Rev. Sci. Instrum.
70
,
3625
(
1999
).
14.
X. H.
Qiu
,
G. V.
Nazin
, and
W.
Ho
,
Science
299
,
542
(
2003
).
15.
C.
Chen
,
P.
Chu
,
C. A.
Bobisch
,
D. L.
Mills
, and
W.
Ho
,
Phys. Rev. Lett.
105
,
217402
(
2010
).
16.
G. V.
Nazin
,
X. H.
Qiu
, and
W.
Ho
,
Phys. Rev. Lett.
90
,
216110
(
2003
).
17.
S. W.
Wu
,
G. V.
Nazin
, and
W.
Ho
,
Phys. Rev. B
77
,
205430
(
2008
).
18.
Shapal, Precision Ceramics, Birmingham, England.
19.
P. M.
Albrecht
and
J. W.
Lyding
,
Appl. Phys. Lett.
83
,
5029
(
2003
).
20.
Series 99 Pulse Valve, Parker Hannifin Corporation, Hollis, NH.
21.
Z. Q.
Wei
,
S.
Guo
, and
S. A.
Kandel
,
J. Phys. Chem. B
110
,
21846
(
2006
).
22.
J. V.
Barth
,
H.
Brune
,
G.
Ertl
, and
R. J.
Behm
,
Phys. Rev. B
42
,
9307
(
1990
).
23.
B. C.
Stipe
,
M. A.
Rezaei
, and
W.
Ho
,
Science
280
,
1732
(
1998
).
You do not currently have access to this content.