We present a specific heat measurement technique adapted to thin or very thin suspended membranes from low temperature (8 K) to 300 K. The presented device allows the measurement of the heat capacity of a 70 ng silicon nitride membrane (50 or 100 nm thick), corresponding to a heat capacity of 1.4 × 10−10 J/K at 8 K and 5.1 × 10−8 J/K at 300 K. Measurements are performed using the 3ω method coupled to the Völklein geometry. This configuration allows the measurement of both specific heat and thermal conductivity within the same experiment. A transducer (heater/thermometer) is used to create an oscillation of the heat flux on the membrane; the voltage oscillation appearing at the third harmonic which contains the thermal information is measured using a Wheatstone bridge set-up. The heat capacity measurement is performed by measuring the variation of the 3ω voltage over a wide frequency range and by fitting the experimental data using a thermal model adapted to the heat transfer across the membrane. The experimental data are compared to a regular Debye model; the specific heat exhibits features commonly seen for glasses at low temperature.

1.
A. D.
McConnell
and
K. E.
Goodson
,
Annu. Rev. Heat Transfer
14
,
129
(
2005
).
2.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
3.
W.
Kim
,
J.
Zide
,
A.
Gossard
,
D.
Klenov
,
S.
Stemmer
,
A.
Shakouri
, and
A.
Majumdar
,
Phys. Rev. Lett.
96
,
045901
(
2006
).
4.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
).
5.
A.
Shakouri
,
Annu. Rev. Mater. Res.
41
,
399
(
2011
).
6.
J.-S.
Heron
,
C.
Bera
,
T.
Fournier
,
N.
Mingo
, and
O.
Bourgeois
,
Phys. Rev. B
82
,
155458
(
2010
).
7.
C.
Blanc
,
A.
Rajabpour
,
S.
Volz
,
T.
Fournier
, and
O.
Bourgeois
,
Appl. Phys. Lett.
103
,
043109
(
2013
).
8.
J.
Cuffe
,
E.
Chavez
,
A.
Shchepetov
,
P.-O.
Chapuis
,
E.-H.
El Boudouti
,
F.
Alzina
,
T.
Kehoe
,
J.
Gomis-Bresco
,
D.
Dudek
,
Y.
Pennec
,
B.
Djafari-Rouhani
,
M.
Prunnila
,
J.
Ahopelto
, and
C. M. Sotomayor
Torres
,
Nano Lett.
12
,
3569
(
2012
).
9.
B. L.
Zink
and
F.
Hellman
,
Solid State Commun.
129
,
199
(
2004
).
10.
B.
Revaz
,
B. L.
Zink
, and
F.
Hellman
,
Thermochim. Acta
432
,
158
(
2005
).
11.
R. O.
Pohl
,
X.
Liu
, and
E.
Thompson
,
Rev. Mod. Phys.
74
,
991
(
2002
).
12.
R.
Sultan
,
A. D.
Avery
,
J. M.
Underwood
,
S. J.
Mason
,
D.
Bassett
, and
B. L.
Zink
,
Phys. Rev. B
87
,
214305
(
2013
).
13.
F.
Völklein
,
Thin Solid Films
188
,
27
(
1990
).
14.
N. O.
Birge
and
S. R.
Nagel
,
Rev. Sci. Instrum.
58
,
1464
(
1987
).
15.
D. G.
Cahill
,
Rev. Sci. Instrum.
61
,
802
(
1990
).
16.
F.
Völklein
,
H.
Reith
, and
A.
Meier
,
Phys. Status Solidi A
210
,
106
(
2013
).
17.
A.
Jain
and
K. E.
Goodson
,
J. Heat Transfer
130
,
102402
(
2008
).
18.
A.
Sikora
,
H.
Ftouni
,
J.
Richard
,
C.
Hébert
,
D.
Eon
,
F.
Omnès
, and
O.
Bourgeois
,
Rev. Sci. Instrum.
83
,
054902
(
2012
).
19.
A.
Sikora
,
H.
Ftouni
,
J.
Richard
,
C.
Hébert
,
D.
Eon
,
F.
Omnès
, and
O.
Bourgeois
,
Rev. Sci. Instrum.
84
,
029901
(
2013
).
20.
F.
Ong
and
O.
Bourgeois
,
Europhys. Lett.
79
,
67003
(
2007
).
21.
A. F.
Lopeandia
,
E.
André
,
J.-L.
Garden
,
D.
Givord
, and
O.
Bourgeois
,
Rev. Sci. Instrum.
81
,
053901
(
2010
).
22.
S.
Tagliati
,
V. M.
Krasnov
, and
A.
Rydh
,
Rev. Sci. Instrum.
83
,
055107
(
2012
).
23.
A. F.
Lopeandia
,
L.
Cerdo
,
M.
Clavaguera-Mora
,
L.
Arana
,
K.
Jensen
,
F.
Muñoz
, and
J.
Rodriguez-Viejo
,
Rev. Sci. Instrum.
76
,
065104
(
2005
).
24.
O.
Bourgeois
,
E.
André
,
C.
Macovei
, and
J.
Chaussy
,
Rev. Sci. Instrum.
77
,
126108
(
2006
).
25.
J.-S.
Heron
,
T.
Fournier
,
N.
Mingo
, and
O.
Bourgeois
,
Nano Lett.
9
,
1861
(
2009
).
26.
“ANSYS(TM) Multiphysics engineering calculation platform.”
27.
L.
Gil
,
M. A.
Ramos
,
A.
Bringer
, and
U.
Buchenau
,
Phys. Rev. Lett.
70
,
182
(
1993
).
28.
I.
Guzman
,
A. F.
Demidenko
,
V. I.
Koshchenko
,
M. S.
Fraifeld
, and
Y. V.
Egner
,
Inorg. Mater.
12
,
1546
(
1976
).
You do not currently have access to this content.