We report on the implementation of a compact multi-detector fully digital spectrometer and data acquisition system at a nuclear microprobe for ion beam analysis and imaging. The spectrometer design allows for system scalability with no restriction on the number of detectors. It consists of four-channel high-speed digitizer modules for detector signal acquisition and one low-speed digital-to-analog converter (DAC) module with two DAC channels and additional general purpose inputs/outputs to control ion beam scanning and data acquisition. Each digitizer module of the spectrometer provides its own Field Programmable Gate Array (FPGA) as digital signal processing unit to analyze detector signals as well as to synchronize the ion beam position in hard real-time. With the customized FPGA designs for all modules, all calculation intensive tasks are executed inside the modules, which reduces significantly the data stream to and CPU load on the control computer. To achieve an optimal energy resolution for all detector/preamplifier pulse shape characteristics, a user-definable infinite impulse response filter with high throughput for energy determination was implemented. The new spectrometer has an online data analysis feature, a compact size, and is able to process any type of detector signals such as particle induced x-ray emission, Rutherford backscattering spectrometry, or scanning transmission ion microscopy.

1.
M.
Bogovac
,
M.
Jakšić
,
D.
Wegrzynek
, and
A.
Markowicz
,
Nucl. Instrum. Methods Phys. Res. B
267
,
2073
2076
(
2009
).
2.
L.
Daudin
,
Ph.
Barberet
,
L.
Serani
, and
Ph.
Moretto
,
Nucl. Instrum. Methods Phys. Res. B
306
,
64
70
(
2013
).
3.
J. S.
Laird
,
R.
Szymanski
,
C. G.
Ryan
, and
I.
Gonzalez-Alvarez
,
Nucl. Instrum. Methods Phys. Res. B
306
,
71
75
(
2013
).
4.
A. A.
Bettiol
,
C.
Udalagama
, and
F.
Watt
,
Nucl. Instrum. Methods Phys. Res. B
267
,
2069
2072
(
2009
).
5.
A. S.
Brogna
,
S.
Buzzetti
,
W.
Dabrowski
,
T.
Fiutowski
,
B.
Gebauer
,
M.
Klein
,
C. J.
Schmidt
,
H. K.
Soltveit
,
R.
Szczygiel
, and
U.
Trunk
,
Nucl. Instrum. Methods Phys. Res. A
568
,
301
308
(
2006
).
6.
A.
Dragone
,
G.
De Geronimo
,
J.
Fried
,
A.
Kandasamy
,
P.
O’Connor
, and
E.
Vernon
,
IEEE Nucl. Sci. Symp. Conf. Rec.
2
,
914
918
(
2005
).
7.
R.
Kirkham
,
P. A.
Dunn
,
A.
Kucziewski
,
D. P.
Siddons
,
R.
Dodanwela
,
G.
Moorhead
,
C. G.
Ryan
,
G.
De Geronimo
,
R.
Beuttenmuller
,
D.
Pinelli
,
M.
Pfeffer
,
P.
Davey
,
M.
Jensen
,
D.
Paterson
,
M. D.
de Jonge
,
M.
Kusel
, and
J.
McKinlay
,
AIP Conf. Proc.
1234
,
240
(
2010
).
8.
G.
Vizkelethy
,
B. L.
Doyle
, and
F. L.
McDaniel
,
Nucl. Instrum. Methods Phys. Res. B
273
,
222
225
(
2012
).
9.
M.
Rothermel
,
T.
Butz
, and
T.
Reinert
,
Nucl. Instrum. Methods Phys. Res. B
267
,
2017
2020
(
2009
).
10.
M.
Jäger
,
K.
Iwig
, and
T.
Butz
,
Rev. Sci. Instrum.
82
,
065105
(
2011
).
11.
J.-F.
Loude
,
Energy Resolution in Nuclear Spectroscopy
(
University of Lausanne
,
Switzerland
,
2000
), http://lphe.epfl.ch/publications/2000/iphe_00_022.ps.
12.
V. T.
Jordanov
,
G. F.
Knoll
,
A. C.
Huber
, and
J. A.
Pantazis
,
Nucl. Instrum. Methods Phys. Res. A
353
,
261
264
(
1994
).
13.
V. T.
Jordanov
and
G. F.
Knoll
,
Nucl. Instrum. Methods Phys. Res. A
345
,
337
(
1994
).
14.
M.
Jäger
and
T.
Butz
,
Nucl Instrum. Methods Phys. Res. A
674
,
24
27
(
2012
).
15.
C. G.
Ryan
and
D. N.
Jamieson
, “
Dynamic analysis: Online quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping
,”
Nucl. Instrum. Methods Phys. Res. B
77
(
1–4
),
203
214
(
1993
).
You do not currently have access to this content.